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A central question in community ecology is how the number of trophic links relates to community species

richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded

from above as the number of species increases; but empirical data suggest that it increases without

bounds. We found a new empirical upper bound on link density in large marine communities with

emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional

approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average

number of resources contributing more than a fraction f to a consumer’s diet, as a function of f. All

observed DPF follow a functional form closely related to a power law, with power-law exponents indepen-

dent of species richness at the measurement accuracy. Results imply universal upper bounds on link

density across the oceans. However, the inherently scale-free nature of power-law diet partitioning

suggests that the DPF itself is a better defined characterization of network structure than link density.

Keywords: community structure; stability; complexity–diversity; interaction strength;

species richness; food webs

1. INTRODUCTION

Relationships between biodiversity and the stability and

complexity of ecological communities are central to

understanding their assembly, structure, function and

persistence, and hence important for conservation.

Odum [1], MacArthur [2] and others initiated the

so-called complexity–diversity–stability debate nearly

60 years ago. By now, we learned that the answers to

the questions asked then critically depend on their precise

formulation [3]. Here we address one specific set of ques-

tions—originally posed by MacArthur [2,4] and May [5]

and still being discussed today [6–8]—concerning the

relation between the number of species S and the

number of trophic links L (i.e. consumer–resource

pairs) in large natural food webs. Because link counts L

inevitably increase with community size, they are ‘normal-

ized’ (descaled) by dividing by the potential number of

links, giving the connectance or ‘complexity’ C ¼ L/S2,

or by species richness, giving the link density Z ¼ L/S of

the community (see table 1 for a list of symbols).

Mathematical arguments and simulations by Gardner &

Ashby [4], May [5] and others (using simple models of

large random communities) showed that there are upper

limits to link density, Z ¼ CS, beyond which community

steady states become unstable, ultimately leading to

species extinctions [9]. Communities with numerically

large Z should therefore not be observable in the field.

Early empirical studies appeared to confirm this predic-

tion (e.g. [10,11], but later work using larger food-web

datasets contradicted the theoretical expectations (e.g.

[8,12–15]). In these studies, scaling laws such as Z/ S
a

were found, with values of a ranging from 0.3 [15] to 1

[14], conforming with the long-standing empirical intui-

tion that ‘complexity begets stability’. These observations

motivated an intense search for mechanisms that could

stabilize communities with large S and Z (e.g. [16–25]).

However, there are a number of issues that, although

known and acknowledged in principle [7,26–31], have

not been fully and jointly accounted for in the analyses

of food-web data.

Three facts in particular are important: most trophic

links are weak [32,33] empirical food-web datasets vary

in their resolution of taxonomic or functional groups

[27,28], and criteria for recording or excluding particular

trophic links vary between datasets [30]. Without giving

these three issues sufficient consideration, conclusions

drawn from analyses of food-web topologies regarding

complexity–diversity and complexity–stability relations

might be premature.

To overcome these problems, we use here the diet-

partitioning function (DPF), proposed by Rossberg et al.

together with a protocol for calculating it from incomple-

tely resolved diet data [34]. We express link strengths in
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terms of gravimetric or volumetric diet fractions, i.e. pro-

portional contributions to a consumer’s diet—a common

theoretical [35] and empirical [30,31] convention—such

that fij is the fraction of the total diet of species j that is

made up of species i. The DPF Zc( f ) is defined as the

community average of the number of prey species that con-

tribute more than a fraction f to the diet of a consumer

species, where f takes values between 0 and 1. The value

of Zc( f ) can be interpreted as the mean number of trophic

links per consumer, where only those links that are stronger

than f are counted.

If Sc is the number of consumer species and Sp is the

number of producer (autotrophic) species in a commu-

nity (so that Sc þ Sp ¼ S) then, irrespective of the

criterion for counting links, the consumer link density

Zc ¼ L/Sc must always be larger than the link density

Z ¼ L/(Sc þ Sp), because Sp . 0. Since Zc equals the

mean number of prey per consumer, it can be estimated

from a sub-sample of consumer species. It is therefore

measured more easily than Z for large communities.

In this paper, we use Zc to test whether there is an

upper bound to Z; specifically, we test if Zc increases

with species richness S because, if it does not, then

Zc. Z implies that Z must be bounded from above for

increasing S. Conversely, an unbounded increase of Z

with S implies an unbounded increase of Zc with S.

Counting only links stronger than f, but keeping f vari-

able, we report estimates of Zc ¼ Zc( f ) in relation to S,

taken from seven different marine stomach-contents data-

sets. Based on our analysis, we will argue that the DPF

Zc( f ) itself might be a more suitable characterization of

communities than any particular value Zc extracted

from it.

2. MATERIAL AND METHODS

(a) Calculation of DPF

We use the diet ratio rij ¼ fij /(12 fij), comparing the contri-

bution of the ith diet item to the sum of all other

contributions to the diet of j, as an alternative measure to

the diet fraction fij. Diet ratios can attain values in the

range [0;1] and, like ‘odds’ in statistics, are the natural

choice on logarithmic scales.

The basic idea underlying the correction of the DPF for

unresolved diet items is to first count only those diet items

that are resolved to species level, and then to compensate

for the proportion of diets left out. A detailed illustration of

the method and hands-on instructions for its implementation

are given in electronic supplementary material, appendix S1.

For a systematic derivation, see Rossberg et al. [34].

(b) Diet data

The DPF Zc( f ) was computed for seven stomach-contents

datasets (labelled A–G) of marine fish and squid [36–40].

As illustrated in figure 1, sample sites span a broad

latitudinal range. Key properties of the datasets are listed in

table 2. Data sources differ considerably by sampling

methods, sampling efforts and the kinds of species included.

Details are discussed in electronic supplementary material,

appendix S2.

(c) Fitting curves to observed DPF

Characterizations of the DPF in terms of theoretical or heur-

istic models should be based only on a range of diet fractions

f for which the data are reliable. For obvious practical

reasons, actual or conceivable diet items making very small

(rare) contributions to a consumer’s diet are unlikely to be

observed and recorded, leading to an underestimation of

the DPF for low threshold values. As f increases, the prob-

ability of observation gradually increases, up to a point

above which sampling is essentially complete and empirical

DPF, while still exhibiting measurement errors, are unbiased.

Based on the number of non-empty stomachs sampled

per consumer, we assume this point to be somewhere

below f ¼ 0.02, i.e. that sampling of contributions larger

than f ¼ 0.02 is essentially complete (see also electronic sup-

plementary material, supplementary discussion S6). In terms

of diet ratios, this corresponds to the range 0.02�r � 50,

which we shall call the reliable range.

Models for the DPF, such as equation (3.2) below, were

fitted to the data over this reliable range by a likelihood max-

imization technique. Details of the procedure are described

in electronic supplementary material, appendix S3.

(d) Species richness

Traditionally, diversity–complexity studies measure diversity

by the numbers of nodes distinguished in empirical food-web

datasets. Since here only sub-samples of food webs are

used, information on species richness has to be obtained

independently. Fortunately, only relative richness estimates

Table 1. List of important symbols.

symbol meaning

a, g exponents for scaling with S

n exponent for scaling of Zc with r

ni n measured in system i

n̄ sample mean of n

Dni residuals of regression of n against log-effort

C food-web connectance

E total number of non-empty stomachs sampled

ei standard error of ni
fij diet fraction: relative contribution of i to j ’s diet

f diet-fraction threshold

L number of trophic links in a food web

r diet-ratio threshold ¼ f/(12 f )

S species richness

Sc consumer species richness

Sp producer species richness

Sfish fish species richness

sn sample standard deviation of n

Z links per species

Zc links per consumer

Zc( f ) diet-partitioning function (DPF)

A

B
C

D

E

F

G

Figure 1. Approximate locations of sampling sites.
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are required for our argument. Further, as shown in a

detailed, quantitative discussion of these questions in

electronic supplementary material, supplementary discussion

S6.2, rather coarse richness estimates are sufficient to

support our main conclusion.

We use estimates of species richness based on the

FishBase [41], OBIS [42] and AquaMaps [43]. These data-

bases have global coverage, and therefore allow us to obtain,

with a few exceptions, richness estimates specific to the study

sites considered here. All three databases are substantially

more detailed for fish than for most other taxa. To reduce

biases owing to data gaps, relative richness is therefore

measured in terms of richness of fish, Sfish, including

Actinopterygii, Chondrichthyes and Agnatha for FishBase

and OBIS, and only Actinopterygii (the dominating taxon)

for AquaMaps. Overall, marine species richness is known

to follow the same global trends as that of fish, with some

variation in details [44]. This fact and the low demands on

accuracy mentioned above justify our choice of Sfish as an

estimate of relative richness. This measure has the additional

advantage that its empirical uncertainty has been quantified

[45], allowing a quantification of the uncertainty this implies

for our main results. As shown in electronic supplementary

material, supplementary discussion S6.2, this uncertainty

is small when compared with that stemming from the

dietary analysis.

Despite this robustness to uncertainties in richness esti-

mates, we performed our analysis using two sets of values

for Sfish, one derived from AquaMaps, the other from Fish-

Base and OBIS. The reason is that both approaches have

specific strengths: FishBase þ OBIS data are based on direct

observations and therefore methodologically more transpar-

ent; AquaMaps is more robust to data gaps, and richness

estimates specific to the delineations of the study areas A–G

can be obtained (see electronic supplementary material,

appendix S4 for details). Estimated species richnesses Sfish

are listed in table 2. The much lower FishBase þ OBIS rich-

ness in the Tropical Atlantic (set D) when compared with

the North Atlantic is inconsistent with other estimates [44]

and most likely attributable to data gaps [42].

Because the FishBase richness estimate for fish in the

‘South China Sea’ (3827) is considerably larger than our esti-

mate for study area F using AquaMaps (512, the most

species-rich study area), the nominal accuracy of the esti-

mated slope of link density versus diversity turns out to be

substantially higher when using the FishBase þ OBIS data.

To caution against inflated accuracy, we therefore conserva-

tively report detailed results using the AquaMaps richness

measures below, followed by short summaries of the

corresponding results using FishBase þ OBIS.

3. RESULTS

(a) Computation and characterization of

empirical DPF

The DPF estimated from sets A–G are shown in figure 2,

with the threshold f expressed as a diet ratio, r ¼ f/(1 2 f ).

Surprisingly, all DPF except for set C (blue) match a

single curve, suggesting the possibility of a universal law

for diet partitioning within these communities. Over the

reliable range in r (see §2c), 0.02 � r�50, the curves

appear to follow power laws (straight lines in log–log

graphs), mirroring a recent similar observation of power

law [46] rather than exponentially distributed [32,33]

trophic fluxes.

This allows us to describe the DPF in the power-law

form: Zc ¼ Kr
2n. The constant of proportionality K can

now be computed from the condition

ð1

0

Zcð f Þdf ¼ 1; ð3:1Þ

which follows from the fact that all diet fractions of a con-

sumer add up to one [34]. One obtains K ¼ p21n21

sin(pn) for 0 , n , 1, giving

Zc ¼
sinðpnÞ

pn
r�n ¼

sinðpnÞ

pn

f

1� f

� ��n

: ð3:2Þ

Table 2. Datasets included in the analysis.

dataset

Sfish

AquaMaps

Sfish

FishBase þ OBIS

consumer species

included

resource species

resolved

non-empty

stomachs

(A) N.-W. Atlantic Shelf I 247 645 146 767 29 032

(B) N.-W. Atlantic Shelf II 247 645 117 216 50 027

(C) Open North Atlantic 335 679 17 19 188

(D) Open Tropical Atlantic 340 179 18 24 357

(E) North Sea 103 192 15 91 5599

(F) South China Sea 512 3827 18 14 �1007

(G) Eastern Bering Sea 92 250 25 137 17 688

10–3 10–2 10–1 100 101 102

threshold diet ratio (r)

0.1

1

10

p
re

y
 s

p
ec

ie
s 

p
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m
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c

reliable range

Figure 2. Comparison of seven empirical DPF from six

marine areas. The diet ratio r is the contribution of one

prey species to a consumer’s diet relative to all other contri-

butions. Solid lines: datasets A–G. Dashed line: power-law

equation (3.2) with n ¼ 0.54. Red, A; green, B; blue, C;

violet, D; pink, E; orange, F; light blue, G.
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Beyond the reliable range, when r � 0.02, the empiri-

cal DPF in figure 2 decline in slope to near zero,

clearly deviating from power laws. This may result from

incomplete sampling of small diet fractions, but may

conceivably show a true underlying deviation from

power laws at very low diet-ratio thresholds. We consider

resolving these possibilities in electronic supplementary

material, supplementary discussion S6, and here restrict

our analysis to the reliable range (0.02 � r�50), addres-

sing the following three questions: (i) are the empirical

DPF consistent with power laws over the reliable

range in r? (ii) What values of the exponent n best fit

the empirical DPF over the reliable range? (iii) How do

the fitted values vary among study sites?

Estimates of n from maximum-likelihood fits of

the power law (3.2) to the empirical DPF over the

reliable range and related statistics are listed in table 3

(details provided in electronic supplementary material,

appendix S3). Goodness-of-fit by x2-statistics shows

that all empirical DPF are compatible with power laws

(table 3). For comparison, models with exponential and

logarithmic dependencies of Zc on r score considerably

worse by x2-statistic and by the Akaike Information

Criterion (AIC, see table 3 and also electronic

supplementary material, appendix S3).

Thus, over the reliable range, all DPF Zc( f ) statisti-

cally match power laws that are wholly characterized by

the exponent n. For power-law DPF, constancy of n

over a range of species richness Sfish implies constancy

of consumer link density Zc( f ) at varying species richness

for any value of the diet-fraction threshold f. Compari-

sons of link densities across study areas are therefore

most efficiently carried out as comparisons of the fitted

exponents n across study areas.

(b) Comparison of the power-law

exponent n across study sites

The maximum-likelihood fitting procedure for the power-

law equation (3.2) yields Cramér-Rao lower bounds as

estimates for the standard errors ei of the fitted parameter

n (table 3) for each dataset i. This information (not enter-

ing conventional regression analysis) was used to estimate

the accuracy of fitted regression models. Specifically, 106

Monte Carlo simulations of the null model

ni ¼ n* þ eiji ði ¼ 1; . . . ; 7Þ ð3:3Þ

with standard-normal ji were generated. Species rich-

nesses and sampling efforts were fixed as in table 2,

and, without loss of generality, we set n* ¼ 0. By evaluat-

ing the simulated data just as the measured data, standard

errors of regression coefficients and p-values for null

hypotheses were obtained. Confidence intervals were

computed by offsetting the corresponding distributions

of the simulated data by the estimated values obtained

from the measured data (which is admitted by the linear-

ity of the regression models and the symmetry of standard

normal distributions).

(i) Cross-site comparison of exponents

without correction for effort

Assuming that the power-law exponents for all study sys-

tems share a common value, the maximum-likelihood

estimate n̄ for this value can be computed as the weighted

average of the values listed in table 2, with the weights

chosen as the inverse variances of the estimation errors

1/ei
2. In what follows, all means and regressions are

computed with this weighting of datasets. We obtain

n̄ ¼ 0.54(2) (digits in parenthesis represent standard

errors estimated using model (3.3)).

To test the null hypothesis that all exponents are equal,

we computed the statistic SS0 ¼
P

i(ni2 n̄)2ei
22

¼ 8.4.

Comparison with model (3.3) shows that data are consist-

ent with this hypothesis at p ¼ 0.21, that is, SS0

computed using simulated data from model (3.3) is

larger than the empirical value in 21 per cent of all cases.

The weighted sample standard deviation of n is sn ¼

0.032, giving a coefficient of variation CV ¼ sn /n̄ ¼ 0.06.

By an argument detailed in electronic supplementary

material, supplementary discussion S6.2, this small CV

itself strongly constrains the scope for any systematic vari-

ation of n with species richness, independent of the

particular measure of species richness used.

However, specific tests for the dependence of n on

species richness have stronger statistical power than, e.g.

the simple test for equal means above. For example, a

regression of n against AquaMaps estimates of species

richness Sfish yields n ¼ 0.62(7) 2 0.00040(27) Sfish.

The 95 per cent confidence region for this regression,

together with measured n values, is shown in figure 3a.

Despite the weak negative trend, the regression coefficient

is consistent with the null hypothesis that n is independent

of Sfish at p ¼ 0.14.

Using the FishBase þ OBIS richness estimates, the

slope of the regression of n on Sfish becomes

20.000034(36), consistent with zero at p ¼ 0.35.

Inclusion or exclusion of dataset D in this analysis (for

Table 3. Results of maximum-likehood fits of three functional forms to the observed DPF.

assumed functional forma: Zc / r2n Zc / max[ln(c2/r),0] Zc / exp(2c1r)

dataset n+ s.e.m. d.o.f. x2
p x2

p DAICb x2 p DAICb

(A) N.-W. Atlantic Shelf I 0.53+0.03 56 35.3 0.99 506.9 ,1029 998.2 415.3 ,1029 338.1

(B) N.-W. Atlantic Shelf II 0.56+0.04 44 33.2 0.88 224.5 ,1029 393.4 223.0 ,1029 165.4

(C) Open North Atlantic 0.30+0.09 10 13.5 0.20 79.3 ,1029 98.5 26.3 0.003 9.4

(D) Open Tropical Atlantic 0.55+0.11 19 10.7 0.93 38.3 0.005 34.5 30.8 0.04 8.1

(E) North Sea 0.50+0.10 20 10.2 0.96 47.2 0.001 47.7 26.2 0.16 6.3

(F) South Chinese Sea 0.43+0.12 13 11.3 0.58 52.6 1026 51.4 25.2 0.02 7.1

(G) Eastern Bering Sea 0.58+0.07 22 25.3 0.28 111.2 ,1029 145.3 63.9 1025 25.5

an, c1, c2 are fitting parameters; proportionality constants are given by equation (3.1).
bExcess AIC relative to power-law fits; positive values indicate that power law is the preferred model.
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its questionable richness estimate) gives numerically

identical results.

(ii) Cross-site comparison of exponents with correction for effort

Figure 3b shows empirical values of n drawn against

sampling effort E, measured in terms of the number of

non-empty stomachs analysed. The graph indicates a

weak dependence of n on effort. To check this hypothesis

we compared the AIC for model fits of the forms n ¼ a

(DAIC ¼ 0), n ¼ a þ bE (DAIC ¼ 20.98), n ¼ a þ bE
21

(DAIC ¼ 23.95) and n ¼ a þ b log E (DAIC ¼ 23.01).

While not unequivocal, the negative DAIC for the last

three models suggest that values of n are somewhat

biased by sampling effort. A bias proportional to E
21

(third model) is favoured by the AIC and appears plaus-

ible because asymptotic low-sample-size biases of this

form are often encountered in statistics. The dotted line

in figure 3b is the corresponding fitted curve. It is given

by n ¼ 0.54(2) 2 40(16)E21, with the second term

describing a bias at low sampling efforts. Exponents n

corrected for this bias are shown in figure 3c.

Indeed, while numerically leaving the overall estimate

n̄ ¼ 0.54(2) unchanged, the correction for effort

improves the consistency of measured diet-partitioning

exponents n across study sites. Based on the statistic

SS ¼

P

i (Dni)
2
ei
22

¼ 2.4, where Dni are the residuals of

the regression against E21, the null hypothesis of equal n

across study sites after correction is consistent with the

data with p ¼ 0.78 (by comparison of SS with simulations

of model (3.3), including simulated corrections for effort).

Correction for effort also removes the weak negative

dependence of diet breadth on species richness. A com-

bined regression of n against sampling effort and species

richness (AquaMaps) yields n ¼ 0.57(7) 2 36(18)E21
2

0.00014(30)Sfish. The 95 per cent confidence region of

this regression for infinite effort is indicated in figure 3c.

Since we simultaneously regressed against effort and

species richness, this confidence region accounts for

uncertainties by both the correction for effort and the

regression on Sfish. (Strong correlations between E
21 and

Sfish would broaden this region rather than narrowing it.)

Comparing the regression slope with simulations of

model (3.3), the null hypothesis that corrected n do not

depend on Sfish is fully supported (p ¼ 0.65). A statistic

characterizing the strength of the dependence of one

empirical quantity on another (rather than the strength

of evidence for a dependence) is the elasticity at the

sample means ([47], see also electronic supplementary

material, appendix S6.2), obtained by normalizing the

regression slope to the sample means of the two variables.

With weighted mean species richness S̄fish ¼ 243.1, the

elasticity of the dependence of n on Sfish evaluates to

20.06(14). When assuming a power-law relation between

n and Sfish, we obtain n ¼ 0.67(Sfish)
20.04 with a 95% con-

fidence interval (20.12, 0.25) for the exponent, again

after correcting for insufficient sampling (and using an

adaptation of model (3.3) to handle this case).

When using FishBase þ OBIS richness estimates, the

p-value for independence of n from Sfish becomes 0.42

when including set D and 0.55 when excluding it. The

regression slope for the dependence of corrected n on

Sfish becomes20.000029(36) (elasticity20.036(45)) when

including and 20.000022(37) (elasticity 20.028(47))

when excluding set D.

All results reported above are consistent with constant

n, and therefore constant consumer link density across

study systems, and the data impose tight bounds on

any conceivable dependence of link-density on species

richness.

4. DISCUSSION

(a) Diversity–complexity implications

We found that, to the accuracy of our analysis, all DPF

followed a power law over the reliable range, which

covers more than three orders of magnitude in diet

ratios, and that the power-law exponent n is independent

of species richness Sfish. We cannot exclude a weak

positive or negative dependence of n on species

richness, but a steady decline of n to zero as Sfish goes

to zero seems unlikely in view of the low upper

bound for the exponent of a conceived power-law relation

n / Sfish
g (20.25 �g � 0.12).

If the DPF exponent n is independent of local species

richness, then so is consumer link density Zc( f ) at any

fixed threshold f within the reliable range. This, in turn,

implies an upper bound on the conventional link density

Z (with links thresholded at f ) that is independent of

community size. This means that Z could, for example,

approach some constant, or may steadily decrease as

species richness increases. Even if the DPF slightly

deviated from a perfect power law, this would lead only

to small additional uncertainties and not affect the role

of Zc( f ) as an upper bound on Z. Observations and
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Figure 3. Dependencies of diet-partitioning exponent n on

species richness and sampling effort. Each point represents

one dataset. In (c) n is corrected for effort. Error bars indicate

s.e. Dotted lines are regressions of n against (a) species rich-

ness, (b) inverse effort and (c) both. Shaded areas in panels

(a) and (c) indicate 95% confidence regions of regression

lines.
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theory suggest that consumers have broader diets at

higher trophic levels [23,48], so the inevitable over-

sampling of consumers from higher trophic levels will

rather over- than underestimate Zc, reinforcing the

interpretation of Zc as an upper bound for Z.

Despite these clear findings, it is not a simple matter to

draw definite conclusions in terms of link density Z or

consumer link density Zc, as that would raise questions

such as how link strength is best measured, how the

threshold f is best chosen, if it might need to be adjusted

with system size, or if simply all links have to be counted

( f ¼ 0). Such questions (addressed in depth in electronic

supplementary material, supplementary discussion S6.3)

relate much more to what, by definition, should count

as a ‘trophic link’ than to actual ecological phenomena.

The power-law nature of the DPF reinforces these

questions, because power laws are, in contrast to other

kinds of functional relationships, ‘scale free’ [49]. This

means that a characteristic scale of the independent

variable (here r) is not implied in the functional rela-

tionship itself.

To sidestep the question how trophic links are to be

counted (or weighted, see [8]), we wish to suggest refor-

mulating the basic problem addressed here as a problem

concerning relations between the distribution of trophic

link strengths and local species richness (both, by specific

measures). Specifically, we asked here if the DPF changes

as species richness changes across the oceans. The answer

we found was that, for fish and squid, stomach-contents

data showed no significant changes, so implying a

universal form: that of the power law, equation (3.2) (at

least in the range of diet ratios 0.02 � r�50). These

findings were anticipated by figure 2, and the subsequent

statistical analyses fully confirmed them.

In electronic supplementary material, supplementary

discussion S6.1, we detail a possible explanation for the

universal power law; essentially that it arises from zoom-

ing into the upper tail of a diet-ratio distribution that

is broad on a logarithmic scale (see [49] for a general

discussion of power laws and mechanisms). But this

explanation does not clarify why the exponent n attains

a universal value. Further study will be needed to under-

stand the underlying mechanisms. This may be achieved

by adapting theories that invoke the presence or absence

of trophic-link to situations with broad distributions

of link strengths on logarithmic scales. Good starting

points might be theories examining limits to link

density through limits to the stability [5], invadibility

[50] or feasibility [51] of communities, and limits on

the occurrence of—potentially destabilizing [52]—loops

in interaction networks [53]. Generalizations of such

theories will express the respective limits in terms of

the DPF or similar characterizations of link-strength

distributions.

Our characterization of the DPF is currently valid

down to diet fractions of 0.02 and it is not yet clear

whether this resolution is sufficient to distinguish between

different theories for mechanisms controlling link density,

or to judge what the implications of the observed DPF are

for ecosystem properties such as stability, invadibility or

feasibility. Only with the more general theories at hand

will we be able to answer these questions. As an illus-

tration, let us speculate that the diet fractions fij of a

consumer j enter a relevant theoretical formula, e.g.

through

c�j ¼

P

i f
2
ij

P

i fij
¼

X

i

f 2ij ; ð4:1Þ

a quantity closely related to Lloyd’s [54] ‘mean crowding’

[55]. ‘Niche breadth’ sensu Levins [56] is simply the

inverse ðc�j Þ
�1

[55]. Invoking the probabilistic inter-

pretation of the DPF [34], the expectation value of c�j
is computed in electronic supplementary material,

appendix S5 as

Ec�j ¼ �

ð1

0

f 2Z 0
cð f Þdf ð4:2Þ

(where Z 0
c( f ) ¼ dZc( f )/df ). For power-law DPF follow-

ing equation (3.2) with 0 , n, 1, this integral evaluates

to Ec�j ¼ ð1� nÞ. With the exponent n ¼ 0.54 previously

found, Ec�j ¼ 0:46. How much uncertainty does our

inability to resolve the DPF for f , 0.02 add to this

result? Consider the extreme and obviously counterfac-

tual (figure 2) case that no diet fractions ,0.02 exist at

all. The corresponding DPF is constant for f � 0.02,

and requires a correction of normalization according to

equation (3.1). With this DPF, formula (4.2) evaluates

to Ec�j � 0:52. The resulting uncertainty in Ec�j is 0.06

(plus the measurement uncertainty in n of similar magni-

tude). This might be sufficiently small to distinguish

between different theoretical models and predictions for

dietary diversity in the oceans. We caution, however,

that the DPF could enter theory through expressions

very different from equation (4.2), perhaps giving more

weight to small diet fractions.

(b) Separation of contributions to empirical DPF

The DPF and the diet-partitioning exponent n are highly

integrated summary statistics. To inform and constrain

theories aimed at explaining their observed constancy, a

separation of distinct contributions to these statistics

can be helpful. This shall here be illustrated by two

contrasting examples.

Define the consumer-specific DPF for a given consu-

mer species as the number of this consumer’s diet

fractions larger than a threshold value f. The (proper)

DPF Zc( f ) is the arithmetic mean of all consumer-

specific DPF over a community. Figure 4 displays

approximations of the consumer-specific DPF of all

consumers who contribute to dataset A. Immediately

apparent is the large variability among consumers. To

characterize this variability, we fixed the threshold diet

ratio at r ¼ f/(1 2 f ) ¼ 0.02 (dashed line), and computed

the cumulative distribution of the number of diet fractions

greater than f, that is, of thresholded consumer generality

[12]. The distribution is shown in the inset of figure 4.

Following Camacho et al. [57], we normalized generality

to its mean (¼Zc( f )). This allows a direct comparison

with a heuristic generality distribution function that was

shown by Camacho et al. [57] to describe binary food-

web data well (dash-dotted line). Both distributions are

characterized by a wide spread and a strong skew towards

small generality. Apparently, the large variability of consu-

mer-specific DPF reflects a corresponding phenomenon

for binary food webs, presumably resulting from phyloge-

netic clustering [58–60]. The large variability among
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consumer-specific DPF, not found among community

DPF, suggests that the mechanism regulating the diet-

partitioning exponent n operates rather at the community

level than at species or individual level.

As a second example, figure 5 displays a time series of

yearly diet-partitioning exponents (+s.e.) computed from

datasets A and B. Each year over 1500 non-empty

stomachs were sampled, so that, by figure 3b, biases

owing to insufficient sampling are not expected. Even

though overall deviations of the yearly slopes from the

sample mean are larger than expected from the computed

standard errors (x2-test, p ¼ 0.01), these deviations are

too small to be associated with any particular structure

in the data. At the 95 per cent confidence level, the

time series shows, despite the visual impression, no sig-

nificant linear or quadratic trend, there is no significant

year-to-year correlation and no individual data point

deviates significantly from n ¼ 0.54 or the sample mean

after Bonferroni correction. We conclude that the current

empirical accuracy is insufficient for identifying temporal

variability in the diet-partitioning exponent n.

(c) Verification

The regularities in DPF that we report should be scruti-

nized and subjected to empirical testing as widely as

possible, especially since generalizations in comparative

food-web studies have often later been shaken by compre-

hensive testing [7]. For marine communities, diet data

have been collected at many sites throughout the world

and over a considerable period from the beginning of

the twentieth century onwards [38]. We would welcome

more high-quality data of this kind becoming publicly

accessible. Here we call for measurements of the DPF

at marine biodiversity hotspots, where species richness

in terms of Sfish can become many times larger than the

largest values covered in this study [43]. We also need

to better understand if, and how, the DPF changes

when including consumers at lower trophic levels, where

the diversity of both consumers and potential resources

increases considerably. Preliminary observations indicate

that even among planktonic consumers, dietary specificity

can be substantial [61].

5. CONCLUSIONS

We propose the DPF as a valuable new tool in community

ecology. Since the DPF is defined as a community-level

average, it can be estimated by averaging over sub-

samples. This allows investigating large communities

without trade-offs in taxonomic resolution or concern

about the empirical basis of link-assignment.

With the data available to us, we were unable to detect

any significant deviations from a universal power law with

exponent n ¼ 0.54(2) in the DPF of communities of fish

and squid across the oceans, using five related but differ-

ent statistical tests. Even though biodiversity varied

fivefold over the sites considered, dietary diversity did

not change noticeably. These findings are made even

more remarkable by the fact that the datasets we used

differ considerably in sampling methods and organisms.

Universal diet partitioning seems to reflect the working

of a yet unidentified ecological mechanism structuring

marine communities, which may or may not be related

to community stability. Only future observations of

deviations from DPF universality will tell how powerful

this mechanism ultimately is. Findings by Townsend

et al. [29] that link density decreases under ecosystem

disturbance are noteworthy in this context.
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Supporting Appendices
to

Universal power-law diet partitioning by marine fish and squid with surprising

stability-diversity implications

by A. G. Rossberg, K. D. Farnsworth, K. Satoh, and J. K. Pinnegar

S1 Details of calculation of diet partitioning function

To correct for incomplete taxonomic resolution of resource species in diet data, we employ the
assumption that the probability that a species is resolved in the recorded diet of a consumer is
independent of the size of this species’ contribution to the diet (Rossberg et al., 2006). The as-
sumption is plausible since indiscernibility of species (one of the most frequently mentioned reasons
in the literature for lumping species into unresolved diet categories), is unrelated to diet fraction.
The number of unresolved resource species is then estimated from the number of resources that
were resolved in the diet tables. If, for example, 3/4 of diets are resolved to species level, and
these contain an average of 6 items contributing more than 1% to consumer diets, then we expect
that among the remaining unresolved 1/4 of diets there are another 6÷ (3/4)× (1/4) = 2 resource
species per consumer above the 1% threshold on average, hence the total consumer link density is
6× (3/4 + 1/4)÷ (3/4) = 6÷ (3/4) = 8. Since diet tables generally list diets of taxonomic species,
taxonomic resolution of consumers is not an issue.

This idea leads to the estimation procedure for the DPF used here (for the derivation, see
Rossberg et al., 2006): From stomach-contents data (marine diet-tables), the fraction that each
diet item contributes to the diet of each consumer species was estimated by dividing the total
amount (mass of volume) found of this item in stomachs of a given consumer species by the total
amount of stomach content of this consumer species analyzed (excluding abiotoc matter). A list
{fi} was compiled of the numerical values of all the diet fractions for all the consumers in the
community, without regard for the identities of resources and consumers. Only those diet items
that were resolved to species level were included in this list (discarding those that were not). The
list was placed in rank order, such that f1 ≥ f2 ≥ . . . ≥ fn. Then, with i the index of the last
fraction greater or equal to f , the function Ẑc(f) defined by

Ẑc(f) =
i

∑n

k=1
fk

(S1)

was used as an estimator for the DPF (Rossberg et al., 2006). It has been shown that Ẑc(f)
approaches Zc(f) if the number of consumer species included in the analysis and the sum

∑

k fk

over all resolved diet fractions are sufficiently large. For an analytical calculation of the error of
Ẑc(f) in predicting Zc(f), see Rossberg et al. (2006).

Consumer-specific DPF (figure 4 main text) were approximated as (n + u) × c, where n is the
number of the consumer’s species-resolved diet fractions ≥ f = r/(1 + r), u is a random number
uniformly distributed between −0.5 and 0.5, added to reduce overlaps among curves (but u = 0 for
n = 0), and c is a correction for unresolved diet items, identical for all consumers, chosen such that
the average over all consumer-specific DPF equals the comunity DPF, here curve A in figure 2.

To compute the distribution of normalized generality (inset in figure 4), we set u = 0. The value
of c cancels out.
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S2 Sources of diet data

The diet data used in this study came from a variety of sources. The two largest and best-resolved
diet tables (sets A and B) describe gravimetric (A) and volumetric (B) diet fractions based of fish and
squid sampled in annual bottom-trawl surveys between Cape Fear, North Carolina and Nova Scotia
in 1973-80 (A, 29032 non-empty stomachs) and 1981-90 (B, 50027 non-empty stomachs) (Rountree,
2001). Notwithstanding the non-overlapping time intervals and the fact that experimental protocols
and the focus of the analyses differed substantially (Rountree, 2001), one should caution that the
two sets might not be fully independent. (Of 767 resolved prey and 146 predator species in set A,
641 prey and 53 predators are unique. Similarly in set B, of the 216 prey and 117 predators, 90
prey and 24 predators are unique.) Sets C and D represent mass fractions from stomach samples of
large pelagic fish caught in longline operations in the open North (C, 188 non-empty stomachs) and
Tropical (D, 357 non-empty stomachs) Atlantic Ocean from June to October 2002 (Satoh et al.,
2004). In set E gravimetric data from 5599 non-empty stomachs of commercial fish collected in two
CEFAS otter trawl research cruises in the central and northern North Sea in 1992 and 1994 are
combined (Pinnegar & Stafford, 2007). The gravimetric data-set F was sampled from 1439 stomachs
(of which about 30% were empty) of pelagic and demersal coastal fish from the South China Sea and
the east coast of Malaysia, landed in Kuala Terengganu, Malaysia between 1993 and 1994 (Bachok
et al., 2004). Finally, set G was obtained by gravimetric analyses of 17688 non-empty stomachs
sampled on the western Bering Sea continental shelf, including the slope, on NMFS bottom and
midwater surveys and commercial fishing vessels (Livingston, 2005).

S3 Curve fitting

Estimates of ν given in Tab. 3 are maximum likelihood fits making use of the known covariance
structure of errors when estimating the DPF Zc(f) by Eq. (S1) and assuming errors in lnZc to
be normal. Only data in the range 0.02 < f < 0.98 is used in order to reduce biases due to
unreported small diet fractions. The data in this range is sufficient to distinguish power laws from
other functional relationships (Tab. 3).

The covariance of (sampling) errors of ln Ẑc(f) for different values of f can be estimated by the
same method as was used in by Rossberg et al. (2006) to derive an expression for the standard
(sampling) error of estimator (S1). Here we only state the result. Let a theoretical relation Zc(f)
be given (as here for the purpose of curve fitting) and let θ(z) denote its inverse, i.e., θ(Zc(f)) = f .
Then, for a DPF Ẑc(f) estimated by Eq. (S1), one has for any two θ1, θ2 between 0 and 1, with
abbreviations Ẑ1 := Ẑc(θ1), Ẑ2 := Ẑc(θ2), Z1 := Zc(θ1), Z2 := Zc(θ2),

cov(ln Ẑ1, ln Ẑ2) ≈
cov(Ẑ1, Ẑ2)

Z1 Z2

≈
1

ScZ1Z2

∫ Z1

0

∫ Z2

0

j

[

min

(

z1

z2

,
z2

z1

)]

dz1 dz2

+
1

pSc max(Z1, Z2)

+
(1 − p)

pSc

[

∫

∞

0

θ(z)2 dz −

∫ Z1

0
θ(z) dz

Z1

−

∫ Z2

0
θ(z) dz

Z2

]

,

(S2)

2



where Sc is the number of consumer species included in the analysis, p = S−1
c

∑n

k=1
fk, and

j(x) :=
1

4x2

∫

∞

0

uE1

( u

2x

)

×

(

u +
4

2 − u exp(u/2)E1(u/2)

)

du. (S3)

E1(x) :=
∫

∞

x
t−1 exp(−t)dt denotes the exponential integral function. The function j(x) can be

approximated as

j(x) = 1 + 3.734x − 0.625x2, (S4)

which is, for 0 ≤ x ≤ 1, accurate to about 1%. Equation (S2) describes the effect of sampling
errors, that is, errors in estimating Zc(f) due to the fact that not all consumer species in the food
web are sampled, and not all diet items of the sampled consumers are resolved to species level. It
does not contain contributions from errors in measuring the fi, since these have been shown to be
comparatively small (Rossberg et al., 2006).

To estimate the exponent ν, the likelihood of the empirical Ẑc(f) was maximized with respect
to ν, assuming true DPF as given by Eq. (3.2), and errors of ln Ẑc(f) that follow a multivariate
normal distribution with a covariance matrix given by Eq. (S2). Integrals over θ(z) in Eq. (S2) were
evaluated numerically. The other functional relationships listed in Tab. 3 were fitted accordingly,
with the normalization given by Eq. (3.1). The known covariances were taken into account also
when computing χ2 and AIC statistics for goodness of fit.

The error estimates for ν in Tab. 3 are Cramér-Rao lower bounds, where the same normal
approximation as above was used to compute the Fisher information (see Kay, 1993). We note that
lower bounds are the conservative choice with respect to the hypothesis that ν is constant across
communities.

Obviously, neighbouring points of Ẑc(f) are highly correlated with each other. This can lead to
numerical instabilities when inverting the covariance matrix for the computation of likelihoods. In
order to enhance stability, successive data points of the empirical DPF Ẑc(f) were substituted by
their averages if the corresponding diet ratios differed by less then q = 20%. As a result, d.o.f. in
Tab. 3 can be considerably smaller than the number of resolved resources. It was confirmed that
results are robust with respect to the particular choice of q.

S4 Details of richness estimation

All data sources we used for richness estimates have specific strength. Here, details of the methods
used to obtain estimates of Sfish are described and discussed.

FishBase counts of fish species by Ecosystem have the advantages of representing direct ob-
servations. A major disadvantage is that ecosystem boundaries in FishBase do not always match
the boundaries of study areas considered here. The “South China Sea” in FishBase, for example,
does not cover the port of Kuala Terengganu where data-set F was collected. Yet, except for the
open North and Tropical Atlantic (sets C and D), approximate correspondences can be established.
To complement the FishBase data, counts of fish species from the OBIS occurrence observation
database for lattice squares corresponding to study areas C and D were obtained (set C: 679 species
in 30◦N − 43◦N × 25◦W − 60◦W; set D: 179 species in the union of 10◦S − 10◦N × 20◦W − 30◦W
and 5◦N − 15◦N × 30◦W − 45◦W).

AquaMaps (Kaschner et al., 2008) provides, among others, estimates of the richness of
Actinopterygii (spiny rayed fishes) at high spacial resolution. From these, average richnesses over
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the study areas were computed (these averages depend only weakly on precise delineations of areas).
AquaMaps estimates species-occurrence probabilities from environmental envelopes, and richness
estimates count all species with over 50% probability of occurrence. Technically, this involves in-
terpolations and extrapolations of occurrence data, and the same caveats apply as for any kind of
extrapolation. Yet, these estimates reproduce the known latitudinal gradient in biodiversity and
local variations, e.g., near biodiversity hotspots (Kaschner et al., 2008). Estimates of richness from
AquaMaps have the advantages of allowing arbitrary delineations of study areas while—by working
with environmental envelopes—being more robust to data gaps in spacial sampling than OBIS data.

S5 Computation of E
∗
cj from the DPF

We compute the expectation value of
∗

cj , defined by Eq. (4.2). Denote by p(f)∆f the probability
that a randomly chosen consumer has a diet fraction in a narrow range [f, f + ∆f ]. If ∆f is very
small, there will be at most one such diet fraction in this range. The expectation value of the sum
of the square of all diet fractions in this range can therefore be written as f2p(f)∆f . We obtain
the expectation value of the sum of all squared diet fractions of a consumer in the range [0, 1] by
summing f2p(f)∆f over this range, that is

E
∗

cj = E

∑

i

f2

ij

=

∫ 1

0

f2p(f)df.

(S5)

Rossberg et al. (2006) showed that p(f) = −Z ′

c(f), with the prime denoting the derivative. Thus

E
∗

cj = −

∫ 1

0

f2Z ′

c(f)df.
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Supporting Material
for

Universal power-law diet partitioning by marine fish and squid with surprising
stability-diversity implications

by A. G. Rossberg, K. D. Farnsworth, K. Satoh, and J. K. Pinnegar

S6 Supplementary Discussion

In the following we address several concerns readers might have in relation to the results presented
in the main text. Part of the discussion here provides additional support to some steps in our main
argument, even though the conclusions of the main text do not require this. Specifically, the obser-
vation of a power-law DPF does not hinge on its reproducibility under certain model assumptions.
The main purpose of this supporting discussion is to clarifying perceived incompatibilities between
our conclusions and other views widely held. To address a broad variety of points that may come
to the reader’s mind and, at the same time, offer the maximum possible orientation, we follow the
highly appraised example by Horwich (1998) and formulated this discussion in a question-answer
format.

S6.1 Questions concerning the power-law form of the DPF

Is the power law form of the DPF, equation (3.2), plausible beyond the mere fact that it
fits empirical data? Yes. A simple stochastic model can explain why DPF follow approximate
power laws for communities containing many potential resource species and being characterized
by complex trophic interactions. Assume that, in order for a consumer to forage on a resource,
several specific conditions need to be satisfied, and that the abundance-independent interaction
strength or affinity aij of consumer j to resource i is given by a product of indices for the degree
to which each of these conditions is met. This product structure of affinities follows, for example,
from a model for affinities (there termed “trophic interaction strengths”) by Rossberg et al. (2010).
For randomly chosen i and j, each of the indices contributing to aij becomes a random number.
(Symbols used in this discussion are summarized in Tab. S1.) If the number of conditions to be
met is large, aij then follows, by virtue of the central limit theorem, an approximate log-normal
distributions. Such a distribution of affinities was observed by Goldwasser & Roughgarden (1993)
for an island food web. Biomass densities Bi of species are also known to follow approximate log-
normal distributions. Let the average contribution of i to the diet of j be given by mij = aijBiFj ,
with the factor Fj describing, e.g., saturation of the consumer. The diet contributions mij are
then, up to the factor Fj , which cancels out when computing rij or fij , log-normally distributed.
Appendix A below analyzes the DPF resulting from consumers foraging on a set of Sr potential
resources, with resource i contributing an amount

mij = exp(σξij)Fj (S6)

to the diet of consumer j, where ξij are independent, standard-normal random numbers and the
parameter σ controls the spread of the log-normally distributed availabilities aijBi (= exp(σξij)).
It is shown that, over the reliable range in r, the DPF follows a power law Zc ∝ r−ν with

ν ≈ σ−1
√

2 ln Sr, (S7)
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Table S1. List of symbols used in Supplementary Discussion

Symbol Meaning

β Slope of linear relation

β̂ Regression slope
ν Exponent for scaling of Zc with r
σ std ln aijBi

σa std ln aij

σB std ln Bi

ξi, ξij Standard normal random variables
aij Affinity of j to resource i
aijBi Availability of i to j
Bi Biomass density of i
fij Diet fraction: relative contribution of i to j’s diet
f Diet-fraction threshold
Fj Feeding intensity of j
q Relative error of species-richness data
mij Contribution of i to j’s diet
n Sampled stomachs per consumer
r Diet-ratio threshold = f/(1 − f)
rxy Correlation coefficient
Sr Resource species richness
Sfish Fish species richness
sx, sy, sν Sample standard deviations of x, y, ν
x, y, ν Sample means of x, y, ν
x Some relative measure of diversity
y Some characterization of link density
Zc Links per consumer
Zc(f) Diet partitioning function (DPF)
Zc Links per consumer
Zsample Sampled links per consumer “without threshold”

provided the spread σ and the number of potential resources Sr are both large. Equation (S7) was
confirmed in simulations of this log-normal model (figure S1, solid lines). An ecological interpreta-
tion of equation (S7) is offered in response to the next question.

A method to directly compute accurate DPF for model (S6) and similar models numerically,
valid for small and large σ and Sr and over the full range in r, is described in Appendix B below.
The method is demonstrated in figure S1 (dotted lines) and used below to evaluate model (S6) for
small σ and Sr.

Why don’t you try to estimate Sr or σ based on ν and equation (S7) as a plausibility
check? Equation (S7) suggests an ecological interpretation that links the scope of an empirical
investigation to the specificity of diet choice within this scope and the exponent ν characterizing
the DPF. This interpretation implies that, while scope and specificity, quantified by Sr and σ,

2



10
-1

10
0

10
1

Li
nk

s 
pe

r 
co

ns
um

er
  Z

c

10
-3

10
-2

10
-1

10
0

10
1

10
2

Threshold diet ratio  r

Figure S1. Theoretical diet partitioning functions. Solid lines are simulation results for the log-normal
model [Flat: S = 1000, σ = 75, and 80 consumer species; slope corresponds to exponent ν = 0.057,
compared to 0.050 predicted by equation (S7). Steep: S = 106, σ = 3.3, 80 consumers; ν = 1.34 (1.59
predicted)]; dotted lines are corresponding accurate numerical results (Appendix B); the dashed line is as
in figure 2, for comparison.

depend on the observation protocol, ν is an inherent system property. To prepare discussion of
this interpretation, we first argue quantitatively that the dominating contribution to the spread
σ of availabilities aijBj entering equation (S7) is the spread of affinities (aij) rather than that of
biomass densities (Bj). Since the spread of affinities is not directly accessible, it is here estimated
indirectly via equation (S7).

Observations by Petchey et al. (2004) for small freshwater ecosystems suggest that species
richness decreases by approximately a factor of three with each trophic level. Assuming, conser-
vatively, a richness of resources Sr = 3Sfish, equation (S7) predicts a spread in availabilities aijBj

of σ = std ln(aijBj) ≈ 6.3 for low-diversity marine ecosystems with Sfish ≈ 100 and ν ≈ 0.54.
Since Sr is comparatively small, the accurate numerical evaluation of the log-normal model (S6)
differs somewhat from equation (S7), rather suggesting a spread of affinities σ ≈ 4.3. The spread of
biomasses Bi among species is surprisingly rarely quoted in the literature, but graphical data (Cyr,
2000; Connolly et al., 2005) indicate that σB = std lnBj = 2 at most. Thus, ignoring correlations
between aij and Bj , so that σ2 = σ2

a + σ2
B , we obtain σa = std ln aij = (4.32 − 22)1/2 = 3.8 as a

lower bound for the spread in affinities. Since σ2
a = 14.4 is considerably larger than σ2

B = 4 even by
these extremely conservative estimates, the total spread in availabilities aijBj is dominated by the
spread in aij . As a caveat, the effect of Bi could be somewhat enhanced by prey switching behaviour
(Greenwood & Elton, 1979). Our conclusion that availabilities are dominated by affinities rather
than biomasses is consistent with the general observation that prey biomasses are bad predictors
of prey intake (Winemiller, 1990; Pinnegar et al., 2003; Quince et al., 2005; de Figueiredo et al.,
2007).

Natural communities, especially marine ones, are rarely sharply bounded. General macroeco-
logical phenomena, such as the form of the DPF, should not depend on the observation protocol
delimiting a community. Hence, when measuring the scope of analysis by of the number Sr of
potential resource species included, and when measuring the specificity by which consumers choose
among these resources by σ2

a, equation (S7) implies a relation between the scope and the specificity

3



of diet choice of the form σ2
a = 2ν−2 lnSr −σ2

B for a given set of consumers whose diet partitioning
exponent is ν, under the assumption of uncorrelated affinities and biomasses. Consider, for ex-
ample, two empirical or theoretical analyses of diet choice, one being restricted to a narrow scope
covering Sr potential resource species, the other having a wider scope covering S′

r > Sr species. The
narrow and the wider scope, respectively, may be given, for example by the sunlit epipelagic zone
and the full water column; or a specific taxonomic group and the full range of species inhabiting
a prescribed volume; or a narrow and a wider range in the resources’ adult body masses. Assume
that, for the given set of consumers considered, the realized diet is nearly completely contained
in the narrow scope, such that inclusion of diets from the wider scope will not change ν. Define
u = S′

r/Sr. Equation (S7) then predicts that, correspondingly, the specificity σ2
a of diet choice from

the extended scope will be larger than from the narrow scope by an amount 2ν−2 lnu. This can be
interpreted intuitively in terms of an addition of criteria for establishing consumer-resource links
(e.g., a match of depth or prey size), which corresponds, in the picture developed in response to the
previous question, to multiplying further indices depending on resources, consumers, and the envi-
ronment to the affinities aij , and thus increasing the variance σ2

a of ln aij over consumer-resource
pairs.

In conclusion, depending on the scope taken into consideration for resources, the value of the
specificity σ2

a will change, at least as long as the smallest scope considered contains already all
relevant resources. The numerical values of σa and of the closely related spread σ of availabilities
therefore do not have much ecological significance. More important are the DPF itself and its
characterization in terms of the exponent ν.

The curves of the empirical DPF plotted in figure 2 can be approximated by power
laws over a certain range, but for r < 0.01 there are clear deviations. Doesn’t this speak
against power laws? The log-normal model (S6) for diet contributions introduced above does
in fact imply that the power law holds only over a limited range. For very small f , the consumer
link density Zc in this model converges to the total number Sr of available resources. This implies
that Zc(0) increases linearly with Sr. This model property is not necessarily unrealistic. Since even
objects of doubtful nutritious value such as plastic bags, pieces of fiberglass, or rubber bands are
occasionally found in fish stomachs (e.g., Rountree, 2001), it would be no surprise if, over sufficiently
long times, bits and pieces of most species will ultimately be consumed by some individuals of any
other or the same species.

Yet, the leveling-off of empirical curves in figure 2 for low diet ratios is not necessarily related to
deviations from power laws by the true DPF of the study systems. The leveling-off can simply be
the result of incomplete sampling. Appendix C below develops a primitive sampling theory, which
assumes, simplistically, that prey size equals stomach size, that each non-empty stomach contains
exactly one species, and that exactly n non-empty stomachs per consumer are sampled. The theory
makes predictions Zsample for the value Ẑc(0) that empirical curves as in figure 2 would reach for very
small r. Two different results are obtained: First, an integral formula for Zsample, equation (S20), is

derived, which is then approximated to Zsample ≈ Zc(1/n). Predicted Zsample and observed Ẑc(0) of
the seven empirical data-sets considered here, assuming true DPF of power-law form with ν = 0.54,
are plotted in figure S2 against the number of non-empty stomachs per consumer n in data-sets A-G.
Both, predictions by equation (S20) and observations exhibit a clear positive trend with increasing
n consistent with the approximation Zsample ≈ Zc(1/n) ∝ nν . Observed values Ẑc(0) tend to

be rather larger than predicted Zsample than smaller. This underestimation of empirical Ẑc(0) by
the sampling theory appears attributable to the fact that non-empty stomachs often contain more
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Figure S2. Empirical and theoretical mean numbers of distinct diet species found after sampling n non-
empty stomachs per consumer. Diamonds: empirical Ẑc(0) for data-sets A-G, stars: Zsample by equa-
tion (S20), dashed line: Zc(1/n). Theoretical values are based on power-law DPF with ν = 0.54.

than the single prey item assumed in Appendix C. If, on the other hand, true DPF Zc(f) would
flatten off shortly below r = 0.02, deviating from power laws, one would expect observed Ẑc(0) to
be lower than the Zsample values predicted for power-law DPF. Thus, the empirical curves rather
speak against deviations of true DPF from power laws for r shortly below 0.02.

Link & Almeida (2000), cited by Link (2002), report that in their marine stomach
sampling survey “The number of stomachs [of a predator] examined versus the number
of prey items observed generally indicated that an asymptote was reached between
500 and 1,000 stomachs.” Doesn’t this speak in favor of well defined link absence
and presence, contradicting the idea of power-law diet partitioning? Looking at the 15
sampling curves presented by Link & Almeida (2000) in support of this statement, one sees that,
while all curves start steeply and then become flatter, some with one or more pronounced bends,
none of the curves ever reaches saturation, except perhaps for that of Yellowtail Flounder. Even
after examining over 15,000 stomach of Spiny Dogfish and finding over 350 distinct prey items,
new prey items are still encountered by Link & Almeida (2000). Discounting for the bends, the
overall shapes of the curves are in good qualitative and, by order of magnitude, semi-quantitative
agreement with the primitive sampling formula derived in Appendix C, Zsample ≈ Zc(1/n) ∝ n0.54.
The data by Link & Almeida (2000) support our picture that Zc(f) approaches a large value of the
order of species richness when f → 0, i.e., when even the rarest prey items are counted. Similar
conclusions can be drawn regarding the sampling curves by Schmid-Araya et al. (2002a) for the gut
contents of aquatic macroinvertebrates.

The fitted values you find for the power-law exponent ν appear to differ from what one
would get from simple regressions of log Zc against log r in figure 2, or from drawing
lines by hand. Where does this difference come from? Our fitting procedure takes the
known covariance structure of empirical DPF into account. For large r this method puts emphasis
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on fitting absolute values, for small r rather on fitting the slopes, because there the variance from
the denominator in equation (S1) dominates.

S6.2 Questions concerning the dependence of the DPF on species rich-

ness

Linear regression can establish the existence of a—possibly indirect—relationship be-
tween two variables, but it can never establish the absence of relations. How can you
conclude that ν does not depend on Sfish? The structure and nature of our argument is
similar to that employed in establishing the “constancy” of other constants of nature. For example,
there is broad scientific agreement that the speed of light (in vacuum) is constant, wherever it is
measured on earth. [Evidence for this fact is so strong that since 1983 the speed of light is used
to define units of length indirectly in terms of units of time. We disregard this complication here,
thus describing the situation before 1983.] This “absence of dependence on location” was estab-
lished by measuring the speed of light at different locations, estimating bounds on the accuracy
of each measurement and verifying that the measured speeds were equal within the measurement
errors. The accurate statement of this result is therefore to say that the speed of light is constant
within measurement errors, thereby quantifying the errors. As a second step, assuming a constant
speed of light, one can then deduce an optimal value for the speed of light (plus an error estimate)
by combining the available measurements. Along an analogous route, the value ν = 0.54(2) was
computed here. Of course, such analyses become stronger the more high-accuracy measurements
they incorporate. In this respect, our current results leave room for improvements. Yet, they are
non-trivial and informative, as is argued in response to the next question.

Any independence arguments can be taken one step further when a specific hypothesis for the
nature of a suspected dependence exists. The scientific nature of this additional step shall again be
illustrated using the example of the speed of light. Assume that some speculative physical theory
implied that the speed of light changed slightly with the latitude at which it is measured. It would
then be natural to re-analyze existing measurements to search for such an effect, despite the fact
that previous analyses had established that the speed of light is constant within measurement errors.
Why this? The restriction to one particular explanatory variable increases the statistical power of
the analysis. Thus, even though the speed of light was found to be constant within measurement
errors, a comparison of these measurements with the latitude where they were taken could still
reveal a statistically significant correlation. On the other hand, if such a correlation cannot be
established, the statistical bounds on conceivable remaining, minute dependencies on latitude can
become smaller than the errors of individual measurements, thus further constraining the parameter
range of the theory in question. We performed an analogous analysis to search of a dependence of
ν on Sfish. No dependence could be found.

Mora et al. (2008) demonstrated large data gaps in inventories of marine fish. Isn’t
it possible that insufficient accuracy of your species richness (Sfish) estimates masks
a dependence of ν on Sfish? Consider first the richness estimates based on FishBase+OBIS.
The analysis by Mora et al. (2008), which is based on essentially the same raw data, estimates
completeness of species inventories for geographic lattice squares of different sizes by extrapolations
of sampling curves. While many parts of the oceans appear to be poorly sampled, the study sites
considered here are largely located in the better-sampled areas. Mora et al. (2008) estimate that
taxonomic inventories of marine fish for the North West Atlantic Shelf (data sets A, B), the Open
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Figure S3. Comparison of estimated relative species richnesses by AquaMaps and FishBase+OBIS. Char-
acters A to G indicate study areas (Tab. 2). The dashed line has a slope of 2.25; the two dotted lines
have slopes of 2.25× 0.8 and 2.25/0.8, respectively; all lines go through the origin. The analysis shows that
relative richness estimates by AquaMaps and FishBase+OBIS are consistent with each other to within 20%,
except for the deviations for study sites D and F discussed in Materials and methods: Species richness.

North Atlantic (set C) and the Eastern Bering Sea (set G) are to 78% or more complete at 36◦

resolution, and to more than 78% complete in the North Sea (set E) and the South China Sea
around Kuala Terengganu (set F) at 18◦ resolution. Sampling in the 18◦ lattice square to the east
of Kuala Terengganu (also part of the South China Sea) is estimated to be at least to 67% complete.
The estimated taxonomic completeness in the area of the Open Tropical Atlantic corresponding to
set D is above 67% at 36◦ resolution. One has to caution that these figures are estimates and true
completeness may differ in either direction. Yet, this data suggests that the relative errors of our
estimates of fish richness are on the order of 20 − 30% compared to exhaustive sampling. Since
these errors are one-sided, the relative errors of using fish richness as estimates of relative richness
across study sites can be expected to be even smaller; and relative richness is what matters most
here.

Since the methodology underlying AquaMaps is more complicated than a simple accumula-
tion of inventories, the accuracy of richness estimates derived thereof is more difficult to asses
by direct methods. In figure S3 we compare richness estimates by AquaMaps with those from
FishBase+OBIS. AquaMaps estimates are consistently by a factor of about 2.25 smaller than Fish-
Base+OBIS estimates, except for sets D and F, which we discussed in Material and methods:

Species richness (main text). For sets A, B, C, G, and E, deviations from this linear relationship
are smaller than the 20− 30% one would expect from the considerations above. We conclude that,
with qualifications for sets D and F, 20 − 30% is a conservative bound for the relative errors of
relative richness estimates by both AquaMaps and FishBase+OBIS.

Applying the standard propagation-of-errors formula to the formula for regression slopes, and
taking into account that sets A and B refer to the same location, we computed that a relative error
of (q × 100)% in richness estimates leads to an additional uncertainty of 0.00030 q in the regression
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slope of ν vs. Sfish using AquaMaps, and of 0.000038 q using FishBase+OBIS with set D, and of
0.000025 q without it. Even for a conservative q = 0.3, these uncertainties only slightly increase the
total uncertainty of the slopes. For AquaMaps, for example, the estimated standard error of the
slope increases from 2.7×10−4 to [2.72 +(3.0×0.3)2]1/2×10−4 = 2.8×10−4. For FishBase+OBIS,
the estimated standard error increases from 3.6× 10−5 to 3.7× 10−5 when including set D, and has
no significant numerical effect when excluding set D.

Diversity among the species forming a community might be poorly characterized by
Sfish. Wouldn’t is be possible that regression of link density against a more appropriate
characterization of diversity reveals a pronounced dependence of the former on the
latter? A general mathematical argument suggests that this is unlikely. Let x be some measure
of diversity and y some characterization of trophic link density. Simple linear regression of k
empirical data-points (xi, yi) (i = 1, . . . , k) yields two distinct characterizations of the dependence

of y on x: the sample correlation coefficient rxy and an estimate β̂ of the slope β of an assumed
linear dependence of y on x. Crucial for the validation of theories relating diversity to link density
(or complexity) is not the value rxy, but the value of β̂, possibly expressed as the elasticity β̂x/y
at the sample means x and y (Hill et al., 2008), to obtain a dimensionless quantity: Provided a
linear fit is justified at all, observation of a strong correlation between x and y, i.e. |rxy| ≈ 1, but of

a small slope, i.e., |β̂x/y| ¿ 1, would support theories predicting that y is essentially independent
of x, because, as x is varied in observations, y changes only little. The strong correlation between
x and y, even when statistically significant, would signify only a numerically small perturbation of
the non-dependence of y on x. In ordinary least-square regression, β̂ and rxy are related as

β̂ = rxy
sy

sx
, (S8)

where sx and sy are the sample standard deviations of x and y. Since rxy is bounded to lie between

−1 and 1, a small value of sy/sx alone already implies a small value of |β̂|. When the sample
ecosystems included in the analysis are a mix of low-, intermediate-, and high-diversity systems,
so that the sample standard deviation sx is of the order of magnitude of the sample mean x,
smallness of sy/y alone is sufficient to ensure smallness of |β̂x/y| = |rxy(sy/y)/(sx/x)|, for any
value of rxy and independent of the specific values xi. Of course, improvements in the accuracy of
diversity measures xi over applying simple rules of thumb will improve estimates of β. But even
rough diversity measures can yield reliable results when the empirical coefficient of variation of the
characterization of link density, sy/y, is small. This is the situation encountered here. The small
value of sν/ν = 0.06 found leaves little room for a dependence of ν on any measure of diversity. From
these considerations, the weak effect of errors in Sfish on regression slopes, computed in response to
the previous question, is also easily understood.

Couldn’t the narrow range of values for ν you find be an aritfact of the definition
of the DPF? In what sense is the range narrow? From our model explaining power law
DPF, it follows that, in principle, DPF with arbitrary values of ν > 0 can be obtained. Figure S1
demonstrates DPF with ν = 0.057 and ν = 1.34. Compared to this range, the width of the 95%
confidence interval for ν in figure 3c of about 0.2 is indeed narrow. Narrow, compared to 1, are also
the error bounds obtained for the elasticity of the dependence of ν on species richness.

Comparisons of the current findings with relations between link density and diversity proposed
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Figure S4. The 95% confidence interval for consumer link densities for the diet fraction threshold f = 0.01
(shaded) in comparison with steep (solid) and flat (dashed) power-law scaling relations proposed in the
literature. Both axes have logarithmic scales.

in the literature can also be considered. However, it is not immediately clear how the diet-fraction
threshold f should be chosen in such comparisons. Speculatively setting f = 0.01, independent of
Sfish, figure S4 maps the 95% confidence region for ν (figure 3c) onto corresponding consumer link
densities via equation (3.2). As illustrated in figure S4, power-law relations of the form Zc ∝ Sα

fish

with α = 0.3 (Schmid-Araya et al., 2002b) are extremely unlikely in this picture, and for larger α
(Dunne, 2005; Martinez, 1992) clearly fall outside the confidence region, independent of the choice
of the coefficient of proportionality (which shifts the straight lines in figure S4 up and down).

S6.3 Questions concerning thresholding of trophic links

Why don’t you simply count all trophic links? We are unaware of clear empirical demon-
strations of a lower bound for the strength of trophic links, or of a bound below which weak links
become highly unlikely (reports of saturating stomach/gut sampling curves were discussed above).
This may be so because no such bounds exist, or because they exist but are too low to be observ-
able without sampling nearly every stomach in a population. In both cases, we cannot observe the
weakest links, and hence cannot count them.

Besides these epistemic constraints, it is conceivable—if not likely—that the sharp ontological
distinction between present and absent trophic links cannot be upheld when trophic link strengths
are spread out widely on logarithmic scales.

Finally, it is at least a plausible conjecture that strong trophic links are ecologically more
important than weak ones, and that an investigation of strong links alone provides some ecologically
useful information. See, however, the next question.

Does it make sense to consider only strong links in your analysis, even though weak
links are known to be important for food-web dynamics? Weak links may be important,
but perhaps not that important: For the theoretical models of community stability and dynamics
that we are aware of, a very weak link, i.e., the limit (link strength) → 0, is equivalent to an absent
link. Even in the scenarios displaying stabilizing effects of weak links described by McCann et al.

(1998), links weaker than a few percent by the relative measure of McCann et al. have negligible
effects on dynamics.
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Yet, it is conceivable in principle that for some ecological mechanisms the combined effect of all
weak trophic links in a community is stronger or comparable to the combined effect of the strong
links that we consider here. Deciding whether this is the case or not will require, among others,
knowledge of the statistical distribution of link strengths. Our work contributes to understanding
this distribution. For the reasons given above, the empirical characterization of this distribution
towards weaker links must remain incomplete here.

When introducing a diet-fraction threshold for counting link, shouldn’t one lower
this threshold with increasing community size to allow for larger dietary diversity in
more species rich communities? Since, historically, the diversity-stability-complexity debate
had build on the ideas of well-defined link absence and presence, it remained largely mute on the
question if a link-strength threshold should be kept fixed of be adjusted (see, however, Kartasche
et al., 2009). By expressing results directly in terms of the DPF, the current approach remains
open to both options. Our proposal to formulate contributions to the diversity-stability-complexity
debate directly in terms of link-strength distributions such as the DPF, rather than in terms of link
counts, would make this question obsolete.

Since generalist consumers partition their diets into more and therefore smaller frac-
tions than specialists, shouldn’t the diet-fraction threshold be lowered for generalists
compared to that for specialists when counting the number of their prey species? Is
the DPF a suitable characterization of dietary diversity at all? While we sympathize
with the sentiment behind this suggestion, it is not immediately practicable. An obvious technical
difficulty would be to consistently determine generality prior to setting the thresholds for count-
ing links. The absolute and relative degree of generality of consumers will depend on the specific
measure of generality used.

Many conceivable measures of generality can be defined in terms of the set of a consumer’s
diet fractions, that is, the consumer’s diet partitioning (e.g., Levins, 1968; Bersier et al., 2002). A
consumer’s diet partitioning, in turn, is fully described by the consumer-specific diet partitioning
function (§b, main text). Ideally, dietary diversity in a community would therefore be characterized
by the full set of consumer-specific DPF (figure 4). The (proper) DPF Zc(f) considered here is
a summary statistic for this set, obtained by averaging over all consumer-specific DPF (in prac-
tice, only over a selected sub-set). Other summary statistics will have their own strengths and
weaknesses, but none will convey all the information contained in the full set of consumer-specific
DPF.

This perspective on the DPF stresses that the whole function Zc(f) is the statistic of interest,
rather than its value at particular points f . Comparisons of DPF at specific points f , implied by
above question, are not part of our main argument.

In fact, assuming power laws, any characterization of the DPF by the consumer link density
Zc(f) at a fixed threshold f would be ambivalent, because Zc(f), as given by equation (3.2), is an
unimodal function of the parameter ν. For f = 0.01, for example, it has a maximum Zc(f) = 9.4
at ν = 0.76.

Diet fractions as small as 0.001 can and have been empirically determined (Baird &
Ulanowicz, 1989; Goldwasser & Roughgarden, 1993). Why are only diet fractions
larger than 0.02 considered in your analysis? Relevant for our analysis is not the question
if some diet fractions of a given size can be found, but if most of them can be found (precisely: if
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the probability of finding them is not constrained by their size). By the arguments in Appendix C,
exhaustive sampling of diet fractions of size f requires on the order of n ≈ 1/f non-empty stomach
samples per consumer. Applying this criterion to our data, we find that for sets C and D, with
n = 11 and 20, i.e., 1/n ≈ 0.09 and 0.05, the lower bound 0.02 might rather be too low than
too high. This may partially explain the observed weak dependence of measured diet-partitioning
exponents ν on sampling effort. We chose the threshold as low as 0.02 in order to capture more
information from other data-sets, and because more precise calculations (stars in figure S2) and the
saturation points in figure 2 suggest that the estimate n ≈ 1/f is a bit too pessimistic.

There may be practical limits to what is feasible, but since the lower-bound f = 0.02
you choose for the fitting range does not even capture the mean diet fraction of some
highly generalist consumers, isn’t it, nevertheless, too high? It is easily seen that the
mean diet fraction of a consumer is simply the inverse of the number of its prey species. This
measure therefore hinges on a sharp distinction between presence and absence of trophic links. But
such a distinction appears difficult, if not impossible, for the epistemic and ontological reasons given
above. The “mean diet fraction” is therefore not sufficiently well defined to provide orientation for
setting a diet-fraction threshold.

A Analytic Approximation of the DPF for independent, log-

normally distributed intakes

We derive equation (S7). Consider a system with Sr potential resource species and chose one
consumer j at random. Assume the intakes mij of species i by this consumer to follow, up to a
constant factor, independent, identical log-normal distributions lnmij ∼ N (µ, σ), that is, all mij

have the cumulative distribution function (c.d.f.) PM (m) := P [mij < m] = Φ((ln(m) − µ)/σ),
where Φ(x) = [1 + erf(x/

√
2)]/2 is the cumulative standard normal distribution. Diet ratios are

defined as

rij =
mij

∑

k 6=i mkj
, (S9)

with k going from 1 to Sr, excluding i. Since the effect of µ cancels out in this expression, we can set
µ = 0 without loss of generality. Numerator and denominator of rij are statistically independent.
For large σ, the fat tail of the log-normal distribution allows the distribution of the denominator in
equation (S9) to be approximated by assuming that the sum is dominated by the largest term. In
this case, the sum is smaller than m if an only if all addends are < m:

P





∑

k 6=i

mkj < m



 ≈
∏

k 6=i

P [mkj < m] = [Φ(ln(m)/σ)]
Sr−1

. (S10)

The c.d.f. of the logarithm of the sum Y := ln
∑

k 6=i mkj can be approximated as

PY (y) : = P [Y < y] = [Φ(y/σ)]
Sr−1

= [1 − (1 − Φ(y/σ))]
Sr−1 ≈ exp [−(1 − Φ(y/σ))(Sr − 1)] ,

(S11)
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provided (1 − Φ(y/σ)) is small (i.e., for sufficiently large y/σ). It is not difficult to see that for
large Sr the function PY (y) makes a swift transition from 0 to 1 at some values y > 0. To estimate
the location of this transition we seek the inflection point y0 given by P ′′

Y (y0) = 0 (primes here and
below denote derivatives). This yields the condition

(Sr − 1) exp

[

− y2
0

2σ2

]

=

√
2πy0

σ
(S12)

for y0. If Sr is sufficiently large, the approximation that ln(y0/σ) is small and can be ignored leads
to an estimate

y0 ≈ σ
√

2 ln Sr. (S13)

y0 increases as the square root of the logarithm of Sr. For sufficiently large Sr, estimate (S13)
justifies the assumption made for equation (S11) that (1 − Φ(y/σ)) is small. In the following, we
shall, however, work directly with the more precise equation (S12). A straightforward calculation
shows that equation (S12) implies that the width of the region where PY (y) goes from 0 to 1,
estimated as |P ′

Y (y0)/P ′′′
Y (y0)|1/2 = σ2/

√

σ2 + y2
0 , becomes narrower as Sr, and hence y0 increases.

This implies that for large Sr the mean of Y is approximately y0, and the width of its distribution is
considerably narrower than the width σ of the distribution of lnmij . One can therefore approximate

X := ln rij = lnmij − Y ≈ lnmij − y0. (S14)

Thus,

PX(x) := P [X < x] ≈ PM (exp(x + y0)) = Φ((x + y0)/σ). (S15)

Now note that, since Zc(f) is the expected number of diet fractions larger than f (Rossberg et al.,
2006), the probability that one of the Sr diet fractions fij , chosen at random, is larger than f is
Zc(f)/Sr. In other words, the DPF equals Sr times the complementary cumulative distribution of
fij . With x := ln r = ln [f/(1 − f)],

Zc = Sr [1 − PX(x)] =
Sr

2

[

1 − erf

(

x + y0√
2σ2

)]

. (S16)

Using the well-known approximation 1 − erf(u) ≈ π−1/2u−1e−u2

for large u, one obtains

Zc ≈ σSr√
2π (x + y0)

exp

[

− (x + y0)
2

2σ2

]

. (S17)

The order of magnitude of the empirically accessible range of diet fraction is limited (fractions
smaller than 1% are typically not fully resolved). For large Sr (≈ Sr − 1), one may therefore
assume |x| ¿ y0, which leads, with help of equation (S12), to

Zc ≈ exp
[

−xy0

σ2

]

. (S18)
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Substituting x = ln r, this becomes the power law

Zc ≈ r−ν (S19)

with ν = y0/σ2 or, employing approximation (S13), ν ≈ σ−1
√

2 ln Sr. This result is verified
numerically in figure S1. To satisfy normalization condition (3.1), a factor (sinπν)/πν of order of
magnitude one needs to be inserted into equation (S19).

B Numerical Computation of the DPF for independent, log-

normally distributed intakes

An accurate numerical computation of DPF as Zc(f) = Sr (1 − P [rij < f/(1 − f)]) (see equa-
tion (S16)) is easy once the cumulative distribution of the random variable rij defined by equa-
tion (S9) is known. We recall that the distribution of the sum of independent random variables
is the convolution of their distributions. The convolution of the Sr − 1 independent log-normal
distributions necessary to obtain the distribution of the denominator in equation (S9) is readily
computed using a method described by Rossberg (2008). The distribution of the full quotient can
then be obtained by a convolution of two distributions on logarithmic scales, as becomes clear from
rewriting log rij = log mij − log

∑

k 6=i mkj .

C Sampling Theory

The following primitive sampling theory links the DPF-approach to empirical studies using stomach
sampling and a presence/absence model of trophic links.

Assume that prey size equals stomach size and that each non-empty sampled stomach contains
exactly one species. Assume further that exactly n non-empty stomachs are sampled from each
consumer species considered, and that all stomach samples are statistically independent.

The probability of finding species i in a non-empty stomach of species j is then fij , the prey
species’ diet fraction. The probability of not finding it there is 1 − fij , and the probability of
finding it in none of the n stomachs sampled is [1 − fij ]

n. If fij is of the order of magnitude of
1 (i.e., i contributes a sizable proportion to the diet of j), this probability will be nearly zero for
reasonably large value of n. In the opposite case (small fij), the probability can be approximated as
[exp(−fij)]

n = exp(−nfij), which is also near zero for fij of order one. The probability of actually
finding i among n non-empty stochmachs of j is therefore 1 − exp(−n fij).

DPF theory implies that, if Zc(f) is the DPF of a community, the probability that there is
a species contributing a diet fraction lying in the interval [f ; f + ∆f ] to the diet of a randomly
chosen consumer from this community is −Z ′

c(f)∆f , provided ∆f is small (Rossberg et al., 2006).
(Z ′

c(f) denotes dZc(f)/df). The probability that a random consumer has a resource species with
a diet fraction of this size and this species is found among n non-empty stomach samples is then
−Z ′

c(f)[1− exp(−nf)]∆f . The expected number of different resource species to be found among n
stomachs of a random consumer is the sum of these probabilities over all diet-fraction sizes

Zsample = −
∫ 1

0

Z ′
c(f) [1 − exp(−nf)] df. (S20)
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This is the expected empirical consumer link density “without threshold”.
Integration by parts yields

Zsample = −Zc(f) [1 − exp(−nf)]
∣

∣

∣

1

f=0
+

∫ 1

0

Zc(f)n exp(−nf)df. (S21)

The f = 0 boundary term always vanishes and the f = 1 term vanishes if Zc(1) = 0, that is, if no
consumer feeds on a single resource alone, which is often a plausible assumption, e.g., in the case
of fish. With the change of variables f = exp(u), the remaining integral can be re-written as

Zsample =

∫ 0

−∞

Zc(e
u)n exp(−neu)eudu. (S22)

This integral can be evaluated approximately by noting that n exp(−neu)eu is close to zero along
most of the u axis, but attains a maximum at u = − lnn. At the maximum, n exp(−neu)eu = e−1

is of order one. If Zc(e
u) does not change much over the region where n exp(−neu)eu is of order

one, one can therefore approximate Zc(e
u) in Eq. (S22) by the constant Zc(e

− ln n) = Zc(1/n) and
approximate sample consumer link density as

Zsample ≈ Zc(1/n)

∫ 0

−∞

n exp(−neu)eudu

≈ Zc(1/n),

(S23)

where the last step again assumes that the number n of samples per consumer species is reasonably
large (so that exp(−n) ≈ 0). Thus, sampling n non-empty stomachs per consumer approximately
corresponds to sampling with a diet-fraction threshold of f = 1/n. With r ≈ f , this implies
Zsample ∝ nν for power law DPF with exponent ν.

The range in u over which n exp(−neu)eu is of order one is itself of order one. Power-law DPF
Zc(e

u) can actually change considerably over this range, which is why equation (S23) is just a crude
approximation.
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