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Abstract

Food webs of habitats as diverse as lakes or desert valleys are known to exhibit common ‘‘food-web patterns’’, but the detailed

mechanisms generating these structures have remained unclear. By employing a stochastic, dynamical model, we show that many aspects

of the structure of predatory food webs can be understood as the traces of an evolutionary history where newly evolving species avoid

direct competition with their relatives. The tendency to avoid sharing natural enemies (apparent competition) with related species is

considerably weaker. Thus, ‘‘experts consuming families of experts’’ can be identified as the main underlying food-web pattern. We

report the results of a systematic, quantitative model validation showing that the model is surprisingly accurate.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The question what determines the structure of natural

food webs has been listed among the nine most important

unanswered questions in ecology (May, 1999). It arises

naturally from many problems related to ecosystem

stability and resilience (McCann, 2000; Yodzis, 1998).

The difficulty of this question stems not only directly from

the complexity of ecological interaction networks, but also

from technical problems with recording, interpreting, and

modelling food webs (Cohen et al., 1993a). For example,

habitats are often not delineated clearly enough to define

sharply which species to include in a web (Thompson and

Townsend, 2005). The commonly used concept of binary

(yes/no) trophic links is problematic, because it turns out

that by various measures (Berlow et al., 2004) weak links

are more frequent than strong links in natural food webs,

and network structures depend on a somewhat arbitrary

thresholding among the weak links (Bersier et al., 1999;

Goldwasser and Roughgarden, 1993; Martinez et al., 1999;

Wilhelm, 2003). Furthermore, the large number of species

interacting in ecosystems has forced researchers recording

food webs to disregard whole subsystems or to coarsen the

taxonomic resolution (Briand and Cohen, 1984). Despite

these and many other complications, statistical compar-

isons have revealed several regularities, food-web patterns,

among independently recorded food webs of habitats as

diverse as Caribbean islands, deserts, and lakes (e.g.,

Camacho et al., 2002; Cattin et al., 2004; Garlaschelli et al.,

2003; Milo et al., 2002; Neutel et al., 2002; Williams and

Martinez, 2000)—indicating that some simple, robust

mechanism structuring food webs is at work. But the

precise nature of this mechanism has remained unclear.

Evolutionary dynamics (Amaral and Meyer, 1999;

Cattin et al., 2004) and pattern selection by population-

dynamical stability (Yodzis, 1981) have been suggested as

factors determining food-web structure. Several dynamical

models containing both ingredients (Caldarelli et al., 1998;

Drossel et al., 2001; Ito and Ikegami, 2006; Loeuille and

Loreau, 2005; Tokita and Yasutomi, 2003; Yoshida, 2003)

have been investigated. However, the large range of

relevant time scales involved in these models makes their

evaluation difficult. It has remained unclear which effects

are essential for generating the known patterns and if these

models reproduce empirical data similarly well as statisti-

cally validated, descriptive food-web models (Cattin et al.,

2004; Cohen et al., 1990; Stouffer et al., 2005; Williams and
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Martinez, 2000) such as the niche model (Williams and

Martinez, 2000) or the nested hierarchy model (Cattin

et al., 2004).

Here we argue that the main mechanism structuring food

webs is the evolution of the pool of species adapted to the

habitat1 considered, which leads to homologies between

related species in the traits determining the vulnerabilities

of species as resources (prey) and in the traits determining

foraging strategies and capabilities. Using a stochastic

dynamical model, we show that food-web structures as

empirically observed can be obtained by such a mechanism.

Our analysis takes the difficulties cited above into account

by employing a quantitative link-strength concept, an

appropriate data standardization, a rigorous model valida-

tion procedure, and by reflecting the inhomogeneity of

empirical methodology in our food-web model and data

analysis.

The model proposed here (‘‘matching model’’) has some

similarity with the ‘‘speciation model’’ that we had

investigated earlier (Rossberg et al., 2005,2006). But the

speciation model lacked crucial elements of the matching

model, e.g., the trait matching between consumers and

resources. As a result, it could reproduce some features of

empirical food-webs, such as vulnerability or generality

distributions (Camacho et al., 2002; Stouffer et al., 2005)

only under unrealistic assumptions regarding the allometric

scaling of evolution rates (Rossberg et al., 2006). There had

also been difficulties with reproducing empirical food webs

when their size exceed some 50 or so species. These

problems seem to be overcome by the matching model. The

current work also considerably improves the model

validation procedure, thus allowing for the first time a

comparison between food-web models based on the Akaike

Information Criterion.

2. The model

The matching model describes the evolution of an

abstract species pool. For each species in the pool the

traits determining its foraging strategies and capabilities

and the traits determining its vulnerability to foraging

(Caldarelli et al., 1998; Drossel et al., 2001; Yoshida, 2003)

are modeled by two sequence of ones and zeros of length n

(the reader might think of oppositions such as sessile/

vagile, nocturnal/diurnal, or benthic/pelagic). The strength

of trophic links increases (nonlinearly) with the number m

of foraging traits of the consumer that match the

corresponding vulnerability traits of the resource (Fig. 1).

A trophic link is considered as present if the number of

matched traits m exceeds some threshold mXm0. In

addition, each species is associated with a size parameter

s characterizing the (logarithmic) body size of a species

(0pso1). Consumers cannot forage on species with size

parameters larger than their own by more than l. The

model parameter l (0plp1) controls the amount of

trophic loops (Polis, 1991) in a food web.

The complex processes driving evolution are modeled by

speciations and extinctions that occur for each species

randomly at rates rþ and r�, respectively (Raup, 1991).

New species invade the habitat at a rate r1. Such

continuous-time birth-death processes are well understood

(Bailey, 1964). With rþor� the steady-state average of the

number of species is r1=ðr� � rþÞ. For new, invading

species the 2n traits and the size parameter s are determined

at random with equal probabilities. For the descendant

species of a speciation (Fig. 1), each vulnerability trait is

flipped with probability pv, each foraging trait is flipped

with probability pf , and a zero-mean Gaussian random

number d (var d ¼ D) is added to the size parameter s of the

predecessor.2 Such a random, undirected model of the

evolution of trophic traits becomes plausible if one assumes

the trophic niche space to be in a kind of ‘‘occupation

equilibrium’’: there are no large voids in niche space to be

filled and no niche-space regions of particularly strong

predation pressure to avoid—hence evolution of traits into

all directions is equally likely.

The model has the adjustable parameters rþ, r�, r1, l,

m0, pv, pf , and D (see Table 1). An important derived

ARTICLE IN PRESS

s
p
e
c
ia

ti
o
n

s
iz

e

j

k

i

m=5

n=7

0 1

1 0

0 0 0

0

01

1 0 1 0 0 11

0 1 1 1 0 00

1 0 1 0 0 11

1 0 1 1 1 01

1 1 1 foraging

vulnerability

0

Fig. 1. The main components of the matching model. Each species ði; j; kÞ
is characterized by n foraging and n vulnerability traits and a size

parameter. Typically consumers (i) are larger than their resources (j). If the

number m of matches between a consumer’s foraging traits and a

resource’s vulnerabilities is large, trophic links result. In speciations ðj !

kÞ some traits mutate. Foraging traits typically mutate more frequently

than vulnerability traits. See text for details.

1We understand a habitat as being given by a set of environmental

conditions rather than a location. 2s ¼ 0; 1 are treated as reflecting boundaries (Rossberg et al., 2006).
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quantity, which illustrates the role of m0 in the model, is the

probability for the link strength m to exceed the threshold

m0,

C0:¼PðmXm0Þ ¼ 2�n
X

n

m¼m0

n

m

� �

. (1)

For large n, food-web structure and dynamics become

independent of n, provided m0 is adjusted such as to keep

C0 constant (Appendix A). Throughout this work n ¼

28 ¼ 256 is used, which is large enough to approximate the

limit n ! 1 and still computationally feasible. The

assumption that all traits have equal weight in determining

the link strength is not essential for the model dynamics.

Traits could have different weight and be a mixture of

qualitative and quantitative traits. The crucial point

(Appendix A) is that the central limit theorem applies in

determining the link strength m from a large number of

traits. The complexity of most foraging interactions in

nature, we believe, makes it plausible to assume that the

number of relevant traits is large. Of course, this has to be

tested by a comparison with empirical data.

Even though the speciation model (Rossberg et al., 2005)

differs in many aspects form the matching model, it can be

shown (Appendix B) that several analytic results derived

for the former (Rossberg et al., 2006) apply under certain

conditions also to the latter. A result important for

simulations is, for example, that the model reaches a

steady state after about T ¼ r�1
þ ln½r�=ðr� � rþÞ� unit times.

In order to ensure independent steady-state samples, each

sample was obtained after initiating the model with zero

species and letting it run for more than 5T . Fig. 2 shows

typical connection matrices of randomly sampled steady-

state model webs in comparison with empirical data. More

samples of connection matrices in comparison with data

and the niche model, as well as a movie illustrating the

model dynamics are available as supplementary material.

3. Method of model validation

The model validation procedure we employed in this

work is an extension of a method we used earlier (Rossberg

et al., 2005). Two main statistics were computed: a w2

statistic directly characterizing the goodness of fit of the

model to the empirical data and the Akaike Information

Criterion (AIC) which admits a systematic comparison of

the goodness of fit between different models, since it takes

differences in model variabilities and in the number of

fitting parameters into account. Both statistics were

computed at maximum likelihood estimates of the para-

meters, precisely, the parameter values that maximize the

(estimated) likelihood of obtaining, among those model

samples that agree with the empirical data in the number of

species, a model sample which agrees with a given empirical

data sets in 13 quantitative food-web characteristics. The

number of species and the 13 quantitative properties were

computed after standardization of both model and

empirical data. A detailed account of the procedure is

given hereafter.

3.1. Empirical food-web data

The data base of empirical food-webs used for validating

the model was provided by Dunne and Martinez. The
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Table 1

Model parameters and their theoretical range

Model parameter Range

Invasion rate r1 r140

Speciation rate rþ rþX0

Extinction rate r� r�4rþ
Size dispersion constant D DX0

Loopiness l 0plp1

Number of foraging/vulnerability traits n nX1

Threshold for link assignment m0 0pm0pn

Trait flipping probabilities pv, pf 0ppv; pfp1=2

Fig. 2. Comparison between model steady state and empirical data. The connection matrix of the Caribbean Reef web (Opitz, 1996) (red box) is compared

to the matrices of 11 random steady-state webs generated by the matching model (parameters as in Table 3). Each black pixel indicates that the species

corresponding to its column eats the species corresponding to its row. Diagonal elements correspond to cannibalism. Pixel sizes vary due to varying webs

sizes. For better comparison, data are displayed after standardization, a random permutation of all species, and a subsequent re-ordering such as to

minimize entries in the upper triangle. Characteristic are, among others, the vertically stretched structures (Cattin et al., 2004) reflecting the strong

inheritance of consumer sets.
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following lists the labels we use for each data set and

references to the original sources: Benguela Current

(Yodzis, 1998), Bridge Brook Lake (Havens, 1992), British

Grassland (Martinez et al., 1999), Canton Creek (Townsend

et al., 1998), Caribbean Reef (Opitz, 1996), Chesapeake Bay

(Baird and Ulanowicz, 1989), Coachella Valley (Polis,

1991), El Verde Rainforest (Waide and Reagen, 1996),

Little Rock Lake (Martinez, 1991), Northeast US Shelf

(Link, 2002), Scotch Broom (Memmott et al., 2000),

Skipwith Pond (Warren, 1989), St. Marks Seegrass

(Christian and Luczkovich, 1999), St. Martin Island

(Goldwasser and Roughgarden, 1993), Stony Stream

(Townsend et al., 1998), Ythan Estuary 1 (Hall and

Raffaelli, 1991), Ythan Estuary 2 (Huxham et al., 1996).

3.2. Data standardization

Both empirical and model data were evaluated/com-

pared after data standardization. The data standardization

procedure consists of three steps:

1. Deleting disconnected species and small disconnected

sub-webs. Graph theory predicts that there will be only

a single large connected component. We keep only this

large component.

2. Lumping of all species at the lowest trophic level into a

single ‘‘trophic species’’. In the conventional procedure

this step is omitted and only the lumping to ‘‘trophic

species’’ (see next step) is performed. We added this step

because in some data sets the lowest trophic level is

particularly strongly lumped. For example, the Chesa-

peake Bay web contains a species ‘‘phytoplankton’’, and

Coachella Valley ‘‘plants/plant products’’. On the other

hand, food webs such as Little Rock Lake resolves the

phytoplankton at the genus level. Lumping the lowest

level improves data intercomparability.

3. The usual lumping of trophically equivalent species into

single ‘‘trophic species’’ (Cohen et al., 1990).

For some data sets with a simple structure this procedure

leads to a considerable reduction of the web size (e.g.,

Bridge Brook Lake shrinking from 74 species to 15). But

generally this is not the case.

Obviously, the information that is lost in any of the three

steps of data standardization does not enter the statistical

analysis. This information is ignored because it is likely to

be biased in at least some of the empirical data sets.

3.3. Food-web properties

Besides the number of species S, the following 13 food-

web properties were used to characterize and compare

empirical and model webs: the number of trophic links L

expressed in terms of the directed connectance C ¼ L=S2

(Martinez, 1991), the clustering coefficient (Camacho et al.,

2002; Dorogovtsev and Mendes, 2002) (Clust in Fig. 3); the

fractions of cannibalistic species (Williams and Martinez,

2000) (Cannib) and species without consumers (Cohen et

al., 1990) (T, top predators); the relative standard deviation

in the number of resource species (Schoener, 1989)

(GenSD, generality s.d.) and consumers (Schoener, 1989)

(VulSD, vulnerability s.d.); the web average of the

maximum of a species’ Jaccard similarity (Jaccard, 1908)

with any other species (Williams and Martinez, 2000)

(MxSim); the fraction of triples of species with two or more

resources, which have sets of resources that cannot be

ordered to be all contiguous on a line (Cattin et al., 2004)

(Ddiet); the average (Cohen et al., 1990) (aChnLg),

standard deviation (Martinez, 1991) (aChnSD), and

average per-species standard deviation (Goldwasser and

Roughgarden, 1993) (aOmniv, omnivory) of the length of

food chains, as well as the log10 of their total number

(Martinez, 1991) (aChnNo). The prefix a at some property

names indicates that these properties were computed using

the fast, ‘‘deterministic’’ Berger–Shor approximation (Ber-

ger and Shor, 1990) of the maximum acyclic subgraph

(MAS) of the food web, which makes these computations

feasible also for large food webs. The number of non-

cannibal trophic links not included in the MAS was

measured as aLoop. When the output MAS of the

Berger–Shor algorithm was not uniquely defined, the

average over all possible outputs was used.

All food-web properties were calculated after data

standardization as described above.

3.4. Fitting of the mean species number

Parameters where always chosen in such a way that the

steady-state average S of the number of species S equals

the value for a given empirical data set Se (to within 8% for

computational reasons). Practically this was achieved by

adjusting a single model parameter (e.g. r1 for the matching

model or the number of species before lumping for the

niche model), while keeping all other model parameters

fixed. Since for the remaining parameters maximum-

likelihood estimates were used and these are invariant

under functional transformations, the specific choice of the

parameter to be adjusted to archive S � Se does not affect

the final values of the best-fitting parameter set.

3.5. Sampling, averaging, and projection to S ¼ Se

The joint probability density of the 13 model food-web

properties conditional to S � Se at fixed parameters was

approximated by a multivariate normal distribution. To

compute this distribution efficiently, we first obtained N ¼

1000 random samples of the model steady-state with S

within 30% of Se and computed the model averages and

covariances of S and the other 13 food-web properties

thereof. Then estimates of the model averages v and the

covariance matrix C of the 13 food-web properties

conditional to S ¼ Se were obtained by a projection

technique (essentially a linear regression, see Rossberg

et al., 2005).
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Fig. 3. Fitted food-web properties. The best fitting results for the matching model (red starts) and for the niche model (blue boxes) are compared to the

empirical data (horizontal lines). Vertical lines correspond to�1 model standard deviation. Because the properties are computed conditional to fixed S, the

value of S always fits exactly.
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The reason for computing the distribution at fixed S is

that, for the small values of 1� rþ=r� that we find, the

distribution of S broadens and deviates considerably from

normality (Rossberg et al., 2006). Typically, less than a

fifth of the sampled food webs had values of S within the

30% range around Se.

3.6. Maximum likelihood estimation and AIC

Maximizing, for a given empirical data set, the likelihood

that the vector ve of empirical properties is reproduced by

the model is equivalent to minimizing, in the normal

approximation, the quantity

Y ¼ w2 þ ln jCj, (2)

with w2:¼ðve � vÞTC�1ðve � vÞ.

Since our numerical estimates for v and C were based on

a relatively small number N of steady-state samples, the

numerical value ofY itself had a sample standard deviation

of about one.3 The numerical minimization of Y over the

remaining model parameters was therefore carried out

using the algorithm of Jones et al. (1998), which employs a

Kriging technique to average and interpolation between

numerical samples of Y at different parameter values to

obtain more accurate estimates of Y and find its global

minimum iteratively. The parameter values where the

minimum was obtained are maximum likelihood estimates

of the parameters for the given empirical data set.

We estimate the accuracy of the value Ymin we obtain for

the global minimum of Y, as computed by a Kriging

interpolation between typically 200 numerical values (i.e.

based on 2� 105 Monte-Carlo samples) to be of the

order 0:2. Finally, the AIC is obtained from Ymin

as AIC ¼ Ymin þ 2� ðnumber of adjustable parametersÞ þ

ðsome constantÞ.

The same Kriging technique was also used to obtain

improved estimates of w2, the 13 model properties, and

their standard deviations at the likelihood maximum. Over

all, a total of about 106 steady-state samples had to be

computed for each empirical data set fitted.

4. Results of model validation

When applying this procedure to the matching model,

only snapshots of the model steady state are compared with

empirical data. Thus, only the relative evolution rates r1=r�
and rþ=r� matter. We set r� ¼ 1. The size-dispersion

constant D has only a weak effect on results4 and was kept

fixed at D ¼ 0:05. The remaining six parameters rþ, r1, l,

m0, pv, and pf were adjusted to fit 17 empirical data sets to

the model as described above (Table 2). Model averages

and standard deviations of the fitted food-web properties

are compared with the empirical data in Fig. 3. Note,

however, that this graphical comparison does not take

covariances between food-web properties into account, and

therefore gives only an incomplete account of the goodness

of fit.

As a quantitative measure for the goodness-of-fit, the w2

values at the likelihood maximum (Section 3.6 above) were

used. For a perfect fit under ideal conditions, this statistic

has a w2-distribution with 14� 6 ¼ 8 statistical degrees

of freedom (DOF). The computed values are listed in

Table 3 (w2M).

Not all empirical food-webs are fitted equally well. For

the three food webs labeled Scotch Broom, British Grass-

land, and Ythan Estuary 2 the value of w2 exceeds the

Bonferroni-corrected 95%-confidence limit w2o23:0 (15

webs). Discrepancies between the remaining 14 data sets

and the model, on the other hand, are revealed only when

pooling all 14 sets:
P

w2 ¼ 173 for 112DOF gives

p ¼ 2� 10�4.

The niche model (Williams and Martinez, 2000) and the

nested hierarchy model (Cattin et al., 2004), two of the best

descriptions known so far, were fitted to the data using the

same procedure.

As required for a systematic comparison between the

models, the food webs generated by these model webs were

standardized (Section 3.2), as well. Thus, model parameters

had to be fitted numerically, deviating from the original

prescriptions (Cattin et al., 2004; Williams and Martinez,

2000). Standardization of the model webs is suggested also

for methodological consistency. For example, Ddiet ¼ 0

for all raw niche-model food webs (Cattin et al., 2004), but

can be non-zero after data standardization (Fig. 3). This

might at first appear to be an undesired artifact of the

standardization procedure. However, consider the hy-

pothetical situation that a real food web is perfectly

interval, but, due to the lumping of species during data

recording, the published empirical network is not. Then,

without applying our data standardization, Ddiet-values

for the recorded empirical web and the niche-model would

not match, even though in reality they do (Ddiet ¼ 0). With

data standardization this problem is, at least partially,

remedied. Yet, data standardization retains information

regarding the degree of intervality: As shown in Fig. 3, the

value of Ddiet is lower for the niche model than it is for the

matching model in most cases, even though the matching

model itself has a tendency to generate interval food webs

(Appendix B).

The w2 statistics for the niche model (w2N ) and the nested

hierarchy model (w2H ) tend to be considerably higher than

for the matching model (Table 3). Such a comparison does

not take into account that these two models have only two

parameters (corresponding to the number of species and

the number of links) and thus four DOF more than the

matching model. A simple statistic that does take the

number of DOF into account is the number of ‘‘outliers’’

where w2 exceeds the Bonferroni-corrected 95% limit

ARTICLE IN PRESS

3This numerical value agrees with an analytic estimate obtained from

the difference of the variances of Hotelling’s T2 (divided by N) and the

corresponding w2 distribution.
4For not too large l, D, only the ratio l=D1=2 is relevant (Rossberg

et al., 2006), as we verified numerically.
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(Table 3). For the matching model, there are three outliers

as discussed above, for the niche model 11, and for the

nested hierarchy model 14.

The low w2 obtained for the matching model are partially

due to a larger variability of the model food webs. This

effect and differences in the number of model parameters

(the ‘‘model complexity’’) are both systematically taken

into account by the AIC. However, only difference between

AIC have a statistical meaning. The AIC was calculated for

all three models (AICM , AICN , AICH ). Negative values for

ðDAICÞM;N :¼AICM �AICN and ðDAICÞM ;H :¼AICM �

AICH indicate that the matching model describes the data

better than the niche model or the nested hierarchy model,

respectively, and that the increased model complexity is

justified. The matching model is favored over the niche

model in 12 out of 17 cases, and over the nested hierarchy

model in all but one case. In the cases where other models

are favored, this is due to unnecessary complexity of the

matching model, and not due to a better fit, as a

comparison of the corresponding w2 values shows. Pooling

all data yields
P

ðDAICÞM ;N ¼ �576 and
P

ðDAICÞM ;H ¼

�1555 in favor of the matching model.

We note that, when omitting the lumping of the lowest

trophic level for data standardization, some w2-values

increase for the matching model (AIC cannot be com-

pared), such as for Canton Creek from 11:3 to about 23 or

for Northeast US Shelf from 11:8 to about 45, while others,

e.g. for Bridge Brook Lake or St. Marks Seegrass, are

nearly unaffected. Overall, the changes are of similar size as

the differences in the goodness of fit between the matching

model and the other two models. Lumping the lowest level

would thus not have much affected the quality of the fits of

the older models, but at the level of accuracy reached here,

it is crucial.

5. Discussion

Among the fitted parameters of the matching model,

some depend just as much on methodological choices at the

time of recording the food web as on the actual ecology. In

particular, the linking threshold m0 (or the linking

probability C0) is determined by the empirical threshold

for link assignment, and the invasion rate r1—as a

parameter determining the web size—depends on the

delineation of the habitat and the species-sampling effort.

The degree of loopiness l might depend on the particular

method used to determine links empirically. Adjusting
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Table 3

Goodness of fit

Food-web name w2M w2N ðDAICÞM;N w2H ðDAICÞM;H

Benguela Current 14.1 14.1 11.6 48.3 � �24.5

Bridge Brook Lake 12.0 12.4 15.2 30.9 � �3.0

British Grassland 54.7 �a 144.6 � �80.1 270.6 � �181.2

Canton Creek 11.3 12.1 6.4 43.2 � �24.3

Caribbean Reef 7.5 79.1 � �52.8 168.8 � �155.0

Chesapeake Bay 9.5 9.6 10.7 28.7 �8.5

Coachella Valley 5.9 31.9 � �13.0 225.2 � �207.1

El Verde Rainforest 14.0 337.6 � �295.9 201.5 � �165.7

Little Rock Lake 11.3 85.5 � �46.8 227.5 � �193.6

Northeast US Shelf 11.8 103.6 � �73.9 204.5 � �181.3

Scotch Broom 25.8 � 83.3 � �42.5 309.3 � �269.3

Skipwith Pond 14.3 39.9 � �10.3 61.4 � �31.8

St. Marks Seegrass 19.3 37.1 � �3.5 22.3 8.2

St. Martin Island 7.4 13.7 �11.3 10.9 �11.0

Stony Stream 14.4 18.5 �3.5 45.9 � �33.8

Ythan Estuary 1 20.5 42.0 � �2.9 79.2 � �43.6

Ythan Estuary 2 46.4 � 46.6 � 16.1 87.0 � �29.5

aStars ( �) denote w2 values exceeding the Bonferroni-corrected 95%

confidence limit.

Table 2

Fitted parameters

Food-web name r1 1� rþ=r� l m0 C0
a pv pf

Benguela Current 2.8 0.080 0.027 131 0.38 0.003 0.32

Bridge Brook Lake 1.4 0.033 0.13 136 0.17 0.000 0.068

British Grassland 1.4 0.014 0 139 0.09 0.014 0.013

Canton Creek 1.7 0.033 0.001 141 0.06 0.006 0.50

Caribbean Reef 0.48 0.0082 0.068 133 0.29 0.008 0.39

Chesapeake Bay 11.5 0.25 0.001 138 0.12 0.000 0.028

Coachella Valley 1.4 0.049 0.034 124 0.71 0.002 0.10

El Verde Rainforest 0.76 0.0054 0.12 139 0.09 0.015 0.036

Little Rock Lake 1.3 0.0092 0.25 138 0.12 0.001 0.043

Northeast US Shelf 0.28 0.0033 0.005 131 0.38 0.009 0.059

Scotch Broom 1.3 0.0067 0.001 144 0.03 0.031 0.006

Skipwith Pond 1.4 0.045 0.033 130 0.43 0.011 0.12

St. Marks Seegrass 0.55 0.0095 0.015 136 0.17 0.025 0.18

St. Martin Island 5.7 0.12 0 135 0.21 0.002 0.32

Stony Stream 0.13 0.0033 10�5 141 0.06 0.014 0.35

Ythan Estuary 1 1.0 0.010 0.0029 140 0.08 0.033 0.037

Ythan Estuary 2 2.7 0.017 0.0022 141 0.06 0.041 0.038

aThe linking probability C0, is a derived quantity depending on m0.
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these three parameters makes the model robust to

differences in empirical methodology.

The remaining three parameters rþ, pv, and pf allow, at

least partially, an ecological interpretation. rþ=r� repre-

sents the fraction of species that entered the species pool by

speciations from other species in the pool, in contrast to the

remaining 1� rþ=r� that entered through random ‘‘inva-

sions’’. The low values found for 1� rþ=r� (Table 2)

indicate that evolutionary processes are essential for

generating the observed structures.

The two quantities pv and pf measure the variabilities of

vulnerability and foraging traits among related species. We

typically find pv much smaller than pf (Table 3). In

particular, pvopf in 14 of 17 data sets (p ¼ 0:006). This
implies that descendant species tend to acquire resources

sets different from their ancestors but mostly share their

enemies. We interpret this as a preference for avoiding

resource competition rather than apparent competition

(Holt and Lawton, 1994): a typical consumer is an expert

for its particular set of resources (resource partitioning),

and a typically resource set consists of a few ‘‘families’’ of

related species—autotrophs or, again, expert consumers.

The three exceptional data sets with pv=pf41 are exactly

those most difficult to fit by the matching model (Table 3).

Interestingly, these are also the three data sets that contain

large fractions (430%) of parasites, parasitoids, and

pathogens (PPP) in the resolved species pool. The other

data sets are dominated by predators, grazers, and primary

produces (PPP fraction t5%). These observations are

consistent with the expectations that (i) due to their high

specialization PPP are less susceptible to resource competi-

tion than predators (Morris et al., 2001) and (ii) the

matching model does not describe PPP well because it

assumes a size ordering which is typical only for

predator–prey interactions (Cohen et al., 1993b; Memmott

et al., 2000; Warren, 1989; Warren and Lawton, 1987).

However, further investigations of these points are

required. For example, contrary to expectations, pv=pf is

close to one also for Ythan Estuary 1.

Another noteworthy observation is that all cases with

positive ðDAICÞM ;N correspond to aquatic systems. This

might reflect the fact that the specificity of foraging, which

our model describes in more detail than the niche model, is

generally less pronounced in aquatic than in terrestrial

system.

The matching model reproduces the empirical distribu-

tions of the numbers of consumers and resources of species

well (see Fig. 4 and supplementary materials). Under

specific conditions, which include pv5pf (see Appendix A),

these become the ‘‘universal’’, scaling distributions (Ca-

macho et al., 2002; Stouffer et al., 2005) characteristic for

the niche model (e.g., Fig. 4, Caribbean Reef). But the

distributions for food webs deviating from these patterns

are also reproduced (e.g., Fig. 4, Scotch Broom). The

speciation model (Rossberg et al., 2005) could achieve this

only under unrealistic assumptions regarding the allometric

scaling of evolution rates (Rossberg et al., 2006).

As has been argued elsewhere (Cattin et al., 2004;

Rossberg et al., 2006), the phylogenetic mechanism can

also explain the long-known phenomenon of ‘‘intervality’’,
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Fig. 4. Food-web degree distributions. Cumulative distributions for the number of resources (upper panels) and consumers (lower panels) of species for

the Caribbean Reef and Scotch Broom webs after data standardization. Points denote empirical data, solid and dotted lines model averages for matching

and niche model, respectively, obtained from those webs that agree with the empirical data in the number of species S. 2s-ranges are indicated in green

(matching model) and grey (niche model), olive at overlaps. Model parameters are as in Table 2.
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that is, the observation that species can typically be ordered

on a line in such a way that the diet of many consumer is a

contiguous set (Cohen, 1978). According to the phyloge-

netic explanation, intervality reflects the fact that, in the

ordering of species that is obtained by drawing them at the

endpoints of the phylogenetic tree in the usual way, sets of

closely related species are contiguous–independent of the

precise definition of ‘‘closely related’’. Adding that

consumers often feed on closely related species yields

intervality (Rossberg et al., 2006).

The current analysis does not directly take information

regarding the taxonomic or phylogenetic relationships

between the species contained in the empirical data sets

into account. We can therefore give only indirect evidence

for the conclusion that the resource species of a consumer

are typically closely related. But Cattin et al. (2004) have

made a very similar observation based directly on

taxonomic and food-web data: there is a close correlation

between the degree of taxonomic similarity and the degree

of trophic similarity. The results of Cattin et al. (2004)

differ from ours in that their analysis symmetrically

included links to consumers and links to resources for the

definition of trophic similarity, while our analysis indicates

that the trophic similarity is usually stronger for links to

consumers (related resources have the same consumers)

than for links to resources. A repetition of the analysis of

Cattin et al. (2004) with an explicit distinction between

consumer- and resource links might therefore provide an

additional, independent test of our interpretation.

6. Conclusions

The surprisingly good fit of the matching model to the

data of predatory food webs suggests that the model

contains the essential mechanisms required to reproduce,

explain, and predict, quantitatively and accurately, the

empirical data. This is substantially more than a model

that, based on some plausible mechanisms, qualitatively

reproduces some observed phenomena.

As is well known from statistical theory, the accuracy of

model validation is limited by (1) the amount of data used

for the validation, (2) the degree of inherent variability of

such data, (3) the quality of the data, and (4) the aspects of

model and data that are compared (here the 13 network

properties). The complexity and the ecological details that

are reasonably incorporated into a model are, in turn,

limited by the achievable degree of accuracy. Model

selection criteria, such as the AIC, have been developed

exactly for the purpose of balancing these limitations in a

systematic and consistent way.

The effects incorporated in the matching model are not

only justified by plausibility, but also by the data. As our

computations indicate (not shown), dropping the size

ordering (l ¼ 1) or enforcing it strictly (l ¼ 0), disabling

phylogeny (rþ ¼ 0), disabling heredity (pv; pf ¼
1
2
) or

rigidifying it (pv; pf ¼ 0) would all typically worsen the

AIC by several decades. On the other hand, the low w2-

statistics obtained indicate that it will not be easy to

improve the model further, provided the comparison based

on the 13 network properties did not miss important

aspects of the data.

We recall that increasing the complexity of a model will

not generally improve its predictive power (nor the AIC),

as it bears the risk of over-fitting parameters. Many

conceivable model refinements such as going over from the

box-car log-bodysize distribution used here to a more

realistic shape (Blackburn and Gaston, 1994), or incorpor-

ating directed body-size evolution (Cope, 1887) in the

model, very likely belong to this category.

The good fit between the matching model and empirical

data goes against the intuition that the structure of food-

webs is tightly related to population dynamical phenom-

ena, such as complexity-stability relationships, Darwinian

fitness, trophic cascades, or top–down and bottom–up

effects. The matching model takes none of this into

account. Two perspectives might help resolving this

paradox: (i) It is conceivable that, even though food-web

topology affects population dynamics, population dy-

namics has only a weak effect on topology. Why this

reverse effect is so weak is not clear. One reason might be

that the mechanisms by which population dynamics affects

topology (e.g. by leading to extinctions or admitting

invasions) are so complex that the correlations they

mediate between the topology and changes in the topology

are weak. But this hypothesis needs to be tested empirically

or in population dynamical models. The matching model

provides a clear statement of what needs to be shown. (ii)

Presumably, there are some topological food-web proper-

ties which are not well reproduced by the matching model.

For example, it appears that, just as the niche model, the

matching model overestimates omnivory (Fig. 3). Popula-

tion dynamics might explain such deviations (McCann,

2000). However, in order to be able to separate population-

dynamical effects from the structures obtained from an

undirected phylogeny, a good phylogenetic null model such

as the matching model should be used for comparison.

The future probably belongs to carefully designed and

validated models that describe both, evolutionary and

population dynamics (Caldarelli et al., 1998; Drossel et al.,

2001; Yoshida, 2003). A promising avenue might also be to

take link-strengths explicitly into account in the character-

ization and validation of such models (Bersier et al., 2002;

Hirata, 1995; Quince et al., 2005; Ulanowicz, 1997).
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Appendix A. Derivation of link dynamics for large n

Here we explain why the network dynamics of the

matching model becomes independent of n for large n, if m0

is properly adjusted as n increases. First, consider a single

trophic link from a (potential) consumer to a (potential)

resource. Denote the foraging traits of the former by f i, the

vulnerability traits of the latter by vi, where i ¼ 1; . . . ; n and
f i; vi 2 f0; 1g.

A.1. Linking probability

Consider the steady-state distribution of the link

strength m defined by

m ¼
X

n

i¼1

1 if f i ¼ vi

0 if f iavi

( )

. (A.1)

Since the f i and vi are equally, independently distributed, m

follows a binomial distribution with mean n=2 and

standard deviation s ¼ n1=2=2. The distribution of x :¼

ðm� n=2Þ=s converges to a standard normal distribution

for large n. The linking probability C0 converges to a fixed

value ð2pÞ�1=2
R1

x0
expð�t2=2Þdt if m0 is adjusted such that

ðm0 � n=2Þ=s converges to a fixed value x0.

A.2. Link-strength mutation as an integrated

Ornstein–Uhlenbeck process

In the following we argue that the dynamics of x between

speciations can be characterized as an integrated Ornstei-

n–Uhlenbeck process if n is large. First, consider only a

single link, as above. When the resource speciates, its

vulnerability traits are inherited by the descendant species,

but with probability pv they flip from vi to 1� vi. If pvo
1
2

this single step can be divided into a series of K small steps,

where a property vi is flipped in each step with a small

probability q and otherwise left unchanged. Taking the

possibility that properties are flipped repeatedly into

account, one finds that the K small steps are equivalent

to the speciation step if

pv ¼
1
2
½1� ð1� 2qÞK � (A.2)

or

q ¼ �
logð1� 2pvÞ

2K
þ OðK�2Þ. (A.3)

For sufficiently large K one has q n51. Then, at most one

trait is flipped in each step, and the change in x ¼ ðm�

n=2Þ=s is of order s�1�n�1=2. As n increases, it becomes

arbitrarily small.

Denote the value of m after the kth step by mk. At each

step, if mk is known, the probability distribution of mkþ1

depends only on n and mk. If qn51, for example, one has

mkþ1 ¼ mk � 1 with probability mkq, mkþ1 ¼ mk þ 1 with

probability ðn�mkÞq, and otherwise mkþ1 ¼ mk. Thus, the

dynamics of m—and of x—from step to step are Markov

processes.

These three properties of the step-by-step dynamics of x

in the limit of large n and K

1. normal distribution in the steady state,

2. Markov property,

3. arbitrarily small changes from step to step,

identify the dynamics as an Ornstein–Uhlenbeck process

(Gardiner, 1990)

dxðtÞ ¼ �mxðtÞdtþ ZdW ðtÞ, (A.4)

whereW ðtÞ is a Wiener process and t ¼ k=K . In particular,

one finds

m ¼ � logð1� 2pvÞ; Z ¼
ffiffiffiffiffiffi

2m
p

. (A.5)

The value of x for a link from a speciating resource to its

consumer is given by the integral of Eq. (A.4) over a t-

interval of unit-length, starting with the value of x for the

ancestor. This implies that the correlation of x between

direct relatives is ð1� 2pvÞ and between relatives of lth

degree ð1� 2pvÞ
l . The corresponding results for a speciat-

ing consumer are obtained by replacing pv in Eq. (A.5)

by pf .

For the inheritance of several links to unrelated (hence

uncorrelated) consumers, Eq. (A.4) holds for each link, and

the Wiener processes are uncorrelated. For links to

unrelated resources correspondingly. For links to related

species the Wiener processes are correlated. From invar-

iance considerations regarding the temporal ordering of

evolutionary events in local networks one finds that for

relatives of lth degree this correlation is ð1� 2pf Þ
l for

species-as-consumers and ð1� 2pvÞ
l for species-as-re-

sources. The correlations between links to related species

from a newly invading species also follow this pattern. This

provides a full characterization of the link dynamics for

large n independent of n.

Appendix B. Relations between the matching model and the

speciation model

In order to make the analytic characterizations of the

degree distributions and other food-web properties ob-

tained for the speciation model (Rossberg et al., 2006)

accessible for the matching model, we derive an approx-

imate description of the matching-model link dynamics

that refers directly to the inheritance of connectivity

between species, i.e., of the information if a link is present

or not, rather than the inheritance of traits determining

links.

Mathematically, this corresponds to a Markov approx-

imation for the dynamics of the connectivity in the

following form: if resource B speciates to C, its connectivity

information to a consumer A is lost with a probability bv
(independent of the previous history) and otherwise copied
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from B to C. When the information is lost, a link from C to

A is established at random with probability C0.

The breaking probability bv can be obtained by equating

the probabilities that A eats C given that A eats C’s

ancestor B for the exact description (in terms of pv and m0)

and the Markov approximation. This gives

bv ¼
1

2n ð1� C0ÞC0

X

n

m1¼m0

X

n�m1

k¼0

X

m0�1

m2¼k

�
n!p2kþm1�m2

v ð1� pvÞ
n�2k�m1þm2

k! ðk þm1 �m2Þ!ðm2 � kÞ!ðn�m1 � kÞ!
ðB:1Þ

with C0 defined by Eq. (1). The corresponding expression

for bf is obtained by replacing pv in Eq. (B.1) by pf .

Many results of Rossberg et al. (2006) relied on the

unrealistic assumption that consumers evolve much slower

than their resources. This assumption was used to argue for

1. fully developed correlations of connectivity from one

consumer to related resources and

2. absence of correlations for connectivity from one

resource to related consumers.

Effects 1 and 2 were then used to simplify calculations. In

the matching model 1 and 2 can be obtained without

assuming large differences in speciation rates: effect 1 is

obtained because statistical correlations in connectivity to

related resources in the matching model depend only on the

correlations between the traits of the resources, and not on

the evolutionary history of the consumer (see also

Appendix A). The correlations are large if pv is small

and, as a result, bv is small. Effect 2 is obtained when pf is

close to 0:5 (foraging traits are randomized in speciations),

which implies that bf is close to 1.

Results of Rossberg et al. (2006) that contribute to a

better understanding of the matching model include the

computation of the time to reach the steady state, the

derivation of the conditions under which the degree

distributions become those of the niche model, and the

explanation why model webs, just as empirical data (Cohen

et al., 1990), exhibit a larger-than-random degree of

‘‘intervality’’. The average number of resource ‘‘families’’

(or ‘‘clades’’) of a consumer in the matching model can also

be estimated, and turns out to be small: the largest value

(3.7) is obtained for the top predator of Ythan Estuary 2.

For most other webs this number is below two.

Appendix C. Supplementary data

Supplementary data associated with this article can be

found in the online version, at doi:10.1016/

j.jtbi.2005.12.021.

References

Amaral, L.A.N., Meyer, M., 1999. Environmental changes, coextinction,

and patterns in the fossil record. Phys. Rev. Lett. 82 (3), 652–655.

Bailey, N.T.J., 1964. The Elements of Stochastic Processes. Wiley, New

York, pp. 97–101 (Chapter 8).

Baird, D., Ulanowicz, R.E., 1989. The seasonal dynamics of the

Chesapeake Bay ecosystem. Ecol. Monogr. 59, 329–364.

Berger, B., Shor, P.W., 1990. Approximation algorithms for the maximum

acyclic subgraph problem. In: Proceedings of the First Annual ACM-

SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, pp.

236–243.

Berlow, E.L., Neutel, A.-M., Cohen, J.E., de Ruiter, P.C., Ebenman, B.,

Emmerson, M., Fox, J.W., Jansen, V.A.A., Jones, J.I., Kokkoris,

G.D., Logofet, D.O., McKane, A.J., Montoya, J.M., Petchey, O.,

2004. Interaction strengths in food webs: issues and opportunities. J.

Anim. Ecol. 73, 585–598.

Bersier, L.-F., Dixon, P., Sugihara, G., 1999. Scale-invariant or scale-

dependent behavior of the link density property in food webs: a matter

of sampling effort? Proc. Natl Acad. Sci. 153, 676–682.
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More connection matrixes and degree distributions

The figures in this file present the results corresponding to Figures 2 and 3 of the main

text for the matching model (this work) and the niche model (Williams and Martinez 2000)

for all empirical data sets considered. In each figure, the first panel shows the connection

matrix of the empirical food web in a red box compared to the first 11 random samples

obtained from a simulation of the matching model. Each black pixel indicates that the

species corresponding to its column eats the species corresponding to its row. Diagonal

elements correspond to cannibalism. Pixel sizes vary due to varying webs sizes. Data are

displayed after standardization, a random permutation of all species, and a subsequent

re-ordering such as to minimize entries in the upper triangle. The second panel in each

figure displays the corresponding data for the niche model. The two bottom panels compare

model and empirical degree distributions (model parameters as in Table 2). As in Figure 3 of

the main text, points denote empirical data, and solid and dotted lines model averages for

matching and niche model, respectively;2σ-ranges are indicated in green (matching model)

and grey (niche model), olive at overlaps. All model distributions were calculated

conditional toS fixed at the empirical value.
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Figure 1: Benguela Current
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Figure 2: Bridge Brook Lake
Matching model:
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Figure 3: British Grassland
Matching model:
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Figure 4: Canton Creek
Matching model:
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Figure 5: Caribbean Reef
Matching model:
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Figure 6: Chesapeake Bay
Matching model:
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Figure 7: Coachella Valley
Matching model:
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Figure 8: El Verde Rainforest
Matching model:
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Figure 9: Little Rock Lake
Matching model:
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Figure 10: Northeast US Shelf
Matching model:
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Figure 11: Scotch Broom
Matching model:
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Figure 12: Skipwith Pond
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Niche model:

0 5 10 15 20
number of species

0

0.2

0.4

0.6

0.8

1

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

distribution of number of resources

0 5 10 15 20
number of species

distribution of number of consumers

13



Figure 13: St. Marks Seegrass
Matching model:
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Figure 14: St. Martin Island
Matching model:
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Figure 15: Stony Stream
Matching model:
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Figure 16: Ythan Estuary 1
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Figure 17: Ythan Estuary 2
Matching model:
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